Skip to main content

Metabolic Analysis of Sulfur Metabolism During Leaf Senescence

  • Chapter
Molecular Physiology and Ecophysiology of Sulfur

Abstract

Plants have a constitutive demand for sulfur to synthesize sulfur-containing amino acids, numerous essential metabolites and secondary metabolites for growth and development. Leaf senescence in plants is a highly coordinated physiological process and is critical for nutrient redistribution from senescing leaves to newly formed organs including developing seeds which act as sinks. In order to study the metabolism and recycling of sulfur-containing compounds during leaf senescence, we analyzed the changes of sulfur-containing metabolites using the model plant Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett WF (1993) Nutrient deficiencies and toxicities in crop plants. American Phytopathological Society (APS) Press, St. Paul

    Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  CAS  PubMed  Google Scholar 

  • Caldana C, Degenkolbe T, Cuadros-Inostroza A, Klie S, Sulpice R, Leisse A, Steinhauser D, Fernie AR, Willmitzer L, Hannah MA (2011) High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J 67:869–884

    Article  CAS  PubMed  Google Scholar 

  • Espinoza C, Degenkolbe T, Caldana C, Zuther E, Leisse A, Willmitzer L, Hincha DK, Hannah MA (2010) Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PloS One 5: e14101

    Google Scholar 

  • Frerigmann H, Gigolashvili T (2014) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7:814–828

    Article  CAS  PubMed  Google Scholar 

  • Galili G, Hoefgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA (1999) Glucosinolates. In: Ikan R (ed). Naturally occurring glycosides. Wiley: Chichester, UK, p 193–223

    Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hesse H, Hoefgen R (2003) Molecular aspects of methionine biosynthesis. Trends Plant Sci 8:259–262

    Article  CAS  PubMed  Google Scholar 

  • Hesse H, Kreft O, Maimann S, Zeh M, Willmitzer L, Hofgen R (2001) Approaches towards understanding methionine biosynthesis in higher plants. Amino Acids 20:281–289

    Article  CAS  PubMed  Google Scholar 

  • Hesse H, Kreft O, Maimann S, Zeh M, Hoefgen R (2004) Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    Article  CAS  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci U S A 104:6478–6483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoefgen R, Nikiforova VJ (2008) Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Physiol Plant 132:190–198

    Article  CAS  PubMed  Google Scholar 

  • Hubberten HM, Klie S, Caldana C, Degenkolbe T, Willmitzer L, Hoefgen R (2012) Additional role of O-acetylserine as a sulfur status-independent regulator during plant growth. Plant J 70:666–677

    Article  CAS  PubMed  Google Scholar 

  • Lee SI, Kim HU, Lee YH, Suh SC, Lim YP, Lee HY, Kim HI (2001) Constitutive and seed-specific expression of a maize lysine-feedback-insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Mol Breed 8:75–84

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 1–889

    Google Scholar 

  • Nguyen HC, Hoefgen R, Hesse H (2012) Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. J Exp Bot 63:5991–6001

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Gakiere B, Kempa S, Adamik M, Willmitzer L, Hesse H, Hoefgen R (2004) Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J Exp Bot 55:1861–1870

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peoples MB, Dalling MJ (1978) Degradation of ribulose 1,5-bisphosphate carboxylase by proteolytic enzymes from crude extracts of wheat leaves. Planta 138:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  PubMed  Google Scholar 

  • Sonderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184, In: Merchant SS, Briggs WR, Ort D (eds)

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Mueller-Roeber B, Fernie AR, Hoefgen R (2013) Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol 162:1290–1310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36:762–770

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Max Planck Society (MPG) for funding. We gratefully acknowledge the contributions of Takayuki Tohge, Salma Balazadeh, Alexander Erban, Patrick Giavalisco, Joachim Kopka, Bernd Mueller-Roeber and Alisdair R. Fernie in obtaining the metabolite profiles and discussing the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Hoefgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Watanabe, M., Hoefgen, R. (2015). Metabolic Analysis of Sulfur Metabolism During Leaf Senescence. In: De Kok, L., Hawkesford, M., Rennenberg, H., Saito, K., Schnug, E. (eds) Molecular Physiology and Ecophysiology of Sulfur. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-20137-5_10

Download citation

Publish with us

Policies and ethics