Skip to main content
  • 3564 Accesses

Abstract

Our understanding of urothelial carcinoma (UC) has advanced significantly over the past three decades to provide a better understanding of the molecular basis of these tumors and the different clinical behaviors of low- and high-grade urothelial carcinoma. Fluorescence in situ hybridization is currently used to monitor UC patients for recurrent tumor and to detect new bladder tumors in patients with hematuria. The detection of cells with FGFR3 mutations in urine shows promise as a way to detect low-grade UC. Assessing upper urinary tract UC for defective mismatch repair with microsatellite instability testing or immunostains for MLH1, PMS2, MSH2, and MSH6 helps identify patients that may have Lynch syndrome. While targeted therapies are being investigated for use in advanced bladder cancer, progress has been slow and molecular profiling of urothelial carcinoma for guiding targeted therapy of UC is not currently clinically indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richter J, Jiang F, Gorog JP, et al. Marked genetic differences between stage pTa and stage pT1 papillary bladder cancer detected by comparative genomic hybridization. Cancer Res. 1997;57:2860.

    CAS  PubMed  Google Scholar 

  2. Sokolova IA, Halling KC, Jenkins RB, et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J Mol Diagn. 2000;2:116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dalbagni G, Presti Jr JC, Reuter VE, et al. Molecular genetic alterations of chromosome 17 and p53 nuclear overexpression in human bladder cancer. Diagn Mol Pathol. 1993;2:4.

    Article  CAS  PubMed  Google Scholar 

  4. Knowles MA, Elder PA, Williamson M, et al. Allelotype of human bladder cancer. Cancer Res. 1994;54:531.

    CAS  PubMed  Google Scholar 

  5. Rosin MP, Cairns P, Epstein JI, et al. Partial allelotype of carcinoma in situ of the human bladder. Cancer Res. 1995;55:5213.

    CAS  PubMed  Google Scholar 

  6. Ruppert JM, Tokino K, Sidransky D. Evidence for two bladder cancer suppressor loci on human chromosome 9. Cancer Res. 1993;53:5093.

    CAS  PubMed  Google Scholar 

  7. Cairns P, Shaw ME, Knowles MA. Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene. 1993;8:1083.

    CAS  PubMed  Google Scholar 

  8. Esrig D, Elmajian D, Groshen S, et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med. 1994;331:1259.

    Article  CAS  PubMed  Google Scholar 

  9. Tsutsumi M, Sugano K, Yamaguchi K, et al. Correlation of allelic loss of the P53 gene and tumor grade, stage, and malignant progression in bladder cancer. Int J Urol. 1997;4:74.

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Zulueta M, Ruppert JM, Tokino K, et al. Microsatellite instability in bladder cancer. Cancer Res. 1993;53:5620.

    CAS  PubMed  Google Scholar 

  11. Hartmann A, Zanardo L, Bocker-Edmonston T, et al. Frequent microsatellite instability in sporadic tumors of the upper urinary tract. Cancer Res. 2002;62:6796.

    CAS  PubMed  Google Scholar 

  12. Jallepalli PV, Lengauer C. Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer. 2001;1:109.

    Article  CAS  PubMed  Google Scholar 

  13. Billerey C, Chopin D, Aubriot-Lorton MH, et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol. 2001;158:1955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sauter G, Mihatsch MJ. Pussycats and baby tigers: non-invasive (pTa) and minimally invasive (pT1) bladder carcinomas are not the same! J Pathol. 1998;185:339.

    Article  CAS  PubMed  Google Scholar 

  15. Uchida T, Wada C, Ishida H, et al. p53 mutations and prognosis in bladder tumors. J Urol. 1995;153:1097.

    Article  CAS  PubMed  Google Scholar 

  16. Sarkis AS, Dalbagni G, Cordon-Cardo C, et al. Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker for disease progression. J Natl Cancer Inst. 1993;85:53.

    Article  CAS  PubMed  Google Scholar 

  17. Shariat SF, Weizer AZ, Green A, et al. Prognostic value of P53 nuclear accumulation and histopathologic features in T1 transitional cell carcinoma of the urinary bladder. Urology. 2000;56:735.

    Article  CAS  PubMed  Google Scholar 

  18. Smith SD, Wheeler MA, Plescia J, et al. Urine detection of survivin and diagnosis of bladder cancer. J Am Med Assoc. 2001;285:324.

    Article  CAS  Google Scholar 

  19. Halling KC, King W, Sokolova IA, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol. 2000;164:1768.

    Article  CAS  PubMed  Google Scholar 

  20. Hajdinjak T. UroVysion FISH test for detecting urothelial cancers: meta-analysis of diagnostic accuracy and comparison with urinary cytology testing. Urol Oncol. 2008;26:646.

    Article  CAS  PubMed  Google Scholar 

  21. Halling KC, Kipp BR. Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol. 2008;15:279.

    Article  CAS  PubMed  Google Scholar 

  22. Bubendorf L, Grilli B, Sauter G, et al. Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings. Am J Clin Pathol. 2001;116:79.

    Article  CAS  PubMed  Google Scholar 

  23. Sarosdy MF, Schellhammer P, Bokinsky G, et al. Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J Urol. 2002;168:1950.

    Article  CAS  PubMed  Google Scholar 

  24. Skacel M, Fahmy M, Brainard JA, et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol. 2003;169:2101.

    Article  CAS  PubMed  Google Scholar 

  25. Lotan Y, Bensalah K, Ruddell T, et al. Prospective evaluation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol. 2008;179:2164.

    Article  PubMed  Google Scholar 

  26. Kipp BR, Halling KC, Campion MB, et al. Assessing the value of reflex fluorescence in situ hybridization testing in the diagnosis of bladder cancer when routine urine cytological examination is equivocal. J Urol. 2008;179:1296.

    Article  PubMed  Google Scholar 

  27. Kipp BR, Karnes RJ, Brankley SM, et al. Monitoring intravesical therapy for superficial bladder cancer using fluorescence in situ hybridization. J Urol. 2005;173:401.

    Article  PubMed  Google Scholar 

  28. Mengual L, Marin-Aguilera M, Ribal MJ, et al. Clinical utility of fluorescent in situ hybridization for the surveillance of bladder cancer patients treated with bacillus Calmette-Guerin therapy. Eur Urol. 2007;52:752.

    Article  PubMed  Google Scholar 

  29. Savic S, Zlobec I, Thalmann GN, et al. The prognostic value of cytology and fluorescence in situ hybridization in the follow-up of nonmuscle-invasive bladder cancer after intravesical Bacillus Calmette-Guerin therapy. Int J Cancer. 2009;124:2899.

    Article  CAS  PubMed  Google Scholar 

  30. van Rhijn BW, Montironi R, Zwarthoff EC, et al. Frequent FGFR3 mutations in urothelial papilloma. J Pathol. 2002;198:245.

    Article  PubMed  Google Scholar 

  31. van Rhijn BW, Lurkin I, Chopin DK, et al. Combined microsatellite and FGFR3 mutation analysis enables a highly sensitive detection of urothelial cell carcinoma in voided urine. Clin Cancer Res. 2003;9:257.

    PubMed  Google Scholar 

  32. Guagnano V, Furet P, Spanka C, et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamin o]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem. 2011;54:7066.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Dr. Halling receives industry funding from Abbott Laboratories and royalties from the sale of the UroVysion probe set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin C. Halling M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Halling, K.C. (2016). Urothelial Carcinoma. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics