Skip to main content
  • 3576 Accesses

Abstract

Breast cancer treatment has evolved over the past 50 years, often as a direct consequence of molecular testing advances. In fact, molecular testing of predictive markers in breast cancer, including hormone receptors and HER2, is the model for personalized cancer treatment. Clinical practice guidelines specify that every primary invasive breast cancer and putative recurrence be tested for ER, PR, and HER2 expression to identify those cancers likely to respond to corresponding targeted treatments. The newest tests for breast cancer management are the tissue-based prognostic and/or predictive molecular assays, which identify patients with biologically indolent breast cancer who will not benefit from cytotoxic chemotherapy and those with intrinsically aggressive disease who may benefit. This chapter reviews clinically standard predictive marker and Oncotype DX® testing, as well as several emerging molecular testing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011. doi:10.1016/j.cell.2011.02.013.

    PubMed  Google Scholar 

  2. Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011;223:307–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  4. Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci. 2001;98:10869–74.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci. 2003;100:8418–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. American Joint Commission on Cancer. AJCC staging manual. 7th ed. New York: Springer; 2010.

    Book  Google Scholar 

  7. Bast RC, Ravdin P, Hayes DF, et al. 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001;19:1865–78.

    PubMed  Google Scholar 

  8. Hammond MEH, Hayes DF, Allred DC, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med. 2010;134:e48–72.

    CAS  PubMed  Google Scholar 

  9. Burstein HJ, Temin S, Anderson H, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol. 2014;32:2255–69.

    Article  PubMed  Google Scholar 

  10. Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240:889–95.

    Article  CAS  PubMed  Google Scholar 

  11. Beato M. Gene regulation of steroid hormones. Cell. 1989;56:335–44.

    Article  CAS  PubMed  Google Scholar 

  12. Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005;19:833–42.

    Article  PubMed  Google Scholar 

  13. Dowsett M, Cuzick J, Ingle J, et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol. 2010;28:509–18.

    Article  CAS  PubMed  Google Scholar 

  14. Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet. 1896;2:104–7.

    Article  Google Scholar 

  15. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Davies C, Godwin J, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomized trials. Lancet. 2011;378:771–84.

    Article  Google Scholar 

  16. Tung N. What is the optimal endocrine therapy for postmenopausal women with hormone receptor-positive early breast cancer? J Clin Oncol. 2013;31:1391–7.

    Article  PubMed  Google Scholar 

  17. Burstein HJ, Griggs JJ. Deep time: the long and the short of adjuvant endocrine therapy for breast cancer. J Clin Oncol. 2012. doi:10.1200/JCO.2011.40.1455.

    Google Scholar 

  18. Yaziji H, Taylor CR, Goldstein NS, et al. Consensus recommendations on estrogen receptor testing in breast cancer by immunohistochemistry. Appl Immunohistochem Mol Morphol. 2008;16:513–20.

    Article  CAS  PubMed  Google Scholar 

  19. Fitzgibbons PL, Murphy DA, Hammond ME, et al. Recommendations for validating estrogen and progesterone receptor immunohistochemistry assays. Arch Pathol Lab Med. 2010;134:930–50.

    CAS  PubMed  Google Scholar 

  20. Harvey JM, Clark GM, Osborne CK, et al. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol. 1990;17:1474–81.

    Google Scholar 

  21. Wolff AC, Hammond EH, Hicks DG et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologist Clinical Practice Guideline Update. J Clin Oncol 2013 [Published ahead of print on October 7, 2013 as 10.1200/JCO.2013.50.9984]

    Google Scholar 

  22. Slamon D, Clark GW, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  23. Slamon D, Godolphin W, Jones L, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.

    Article  CAS  PubMed  Google Scholar 

  24. Press MF, Pike MC, Chazin VR, et al. Her-2/neu expression in node-negative breast cancer: direct tissue quantitation by computerized image analysis and associated of overexpression with increased risk of recurrent disease. Cancer Res. 1993;53:4960–70.

    CAS  PubMed  Google Scholar 

  25. Hudis CA. Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med. 2007;357:39–51.

    Article  CAS  PubMed  Google Scholar 

  26. Press MF, Slamon DJ, Flom KJ, et al. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol. 2002;20:3095–105.

    CAS  PubMed  Google Scholar 

  27. Perez EA, Suman VJ, Davidson NE, et al. HER2 testing by local, central, and reference laboratories in specimens from the North Central Cancer Treatment Group N9831 Intergroup Adjuvant Trial. J Clin Oncol. 2006;24:3032–8.

    Article  PubMed  Google Scholar 

  28. Wolff AC, Hammond EH, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131:18–43.

    CAS  PubMed  Google Scholar 

  29. Perez EA, Dueck AC, McCullough AE, Reinholz MM, Tenner KS, Davidson NE, Gralow J, Harris LN, Kutteh LA, Hillman DW, Jenkins RB, Chen B. Predictability of adjuvant trastuzumab benefit in N9831 patients using the ASCO/CAP HER2-positivity criteria. J Natl Cancer Inst. 2012;104:159–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bhargava R, Lal P, Chen B. Chromogenic in situ hybridization for the detection of HER-2/neu amplification in breast cancer with an emphasis on tumors with borderline- and low-level amplification. Am J Clin Pathol. 2005;123:237–43.

    Article  CAS  PubMed  Google Scholar 

  31. Gruver AM, Peerwani Z, Tubbs RR. Out of the darkness and into the light: bright field in situ hybridisation for delineation of ERBB2 (HER2) status in breast carcinoma. J Clin Pathol. 2010;63:210–9.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mansfield AS, Sukov WR, Eckel-Passow JE, et al. Comparison of fluorescence in situ hybridization (FISH) and dual-ISH (DISH) in the determination of HER2 status in breast cancer. Am J Clin Pathol. 2013;139:144–50.

    Article  PubMed  Google Scholar 

  33. Lal P, Salazar PA, Hudis CA, et al. HER-2 testing in breast cancer using immunohistochemical analysis and fluorescence in situ hybridization: a single-institution experience of 2,279 cases and comparison of dual-color and single-color scoring. Am J Clin Pathol. 2004;121:631–6.

    Article  PubMed  Google Scholar 

  34. Clark BZ, Bhargava R. Bright-field microscopy for HER2 gene assessment: not just DISH-ful thinking? Am J Clin Pathol. 2013;139:137–9.

    Article  PubMed  Google Scholar 

  35. Berry DA, Cronin KA, Plevritis SK, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353:1784–92.

    Article  CAS  PubMed  Google Scholar 

  36. Hayes DF. Targeting adjuvant chemotherapy: a good idea that needs to be proven! J Clin Oncol. 2012;30:1264–7.

    Article  CAS  PubMed  Google Scholar 

  37. Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  CAS  PubMed  Google Scholar 

  38. Gnant M, Harbeck N, Thomssen C. St. Gallen 2011: summary of the consensus discussion. Breast Care (Basel). 2011;6:136–41.

    Article  Google Scholar 

  39. Harbeck N, Thomssen C, Gnant M. St. Gallen 2013: brief preliminary summary of the consensus discussion. Breast Care (Basel). 2013;8:102–9.

    Article  Google Scholar 

  40. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  41. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    Article  CAS  PubMed  Google Scholar 

  42. Habel LA, Shak S, Jacobs M, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 2006;2006:R25.

    Article  Google Scholar 

  43. Tang G, Cuzick J, Costantino JP, et al. Risk of recurrence and chemotherapy benefit for patients with node-negative, estrogen receptor-positive breast cancer: recurrence score alone and integrated with pathologic and clinical factors. J Clin Oncol. 2011;33:4365–72.

    Article  Google Scholar 

  44. Albain KS, Barlow WE, Shak S, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11:55–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Dowsett M, Cuzick J, Wale C, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol. 2010;28:1829–34.

    Article  PubMed  Google Scholar 

  46. Cuzick J, Dowsett M, Pineda S, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health recurrence score in early breast cancer. J Clin Oncol. 2011;32:4273–8.

    Article  Google Scholar 

  47. van’t Veer LJ, Dai J, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  Google Scholar 

  48. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  49. Buyse M, Loi S, van’t Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98:1183–92.

    Article  CAS  PubMed  Google Scholar 

  50. Drukker CA, Bueno-de-Mesquita JM, van Harten WH, et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer. 2013;133:929–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Hornberger J, Alvarado MD, Chien R, et al. Clinical validity/utility, change in practice patterns, and economic implications of risk stratifiers to predict outcomes for early-stage breast cancer: a systematic review. J Natl Cancer Inst. 2012;104:1068–79.

    Article  PubMed  Google Scholar 

  52. Parker JS, Mullins M, Cheang MCU, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Nielsen TO, Parker JS, Leung S. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 2010;16:52222–5232.

    Article  Google Scholar 

  54. Yu K, Lee CH, Tan PH, et al. Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clin Cancer Res. 2004;10:5508–17.

    Article  CAS  PubMed  Google Scholar 

  55. Hu Z, Fan C, Oh DS, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006;7:96–107.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Cancer genome atlas network. Comprehensive molecular portraits of human breast tumors. Nature. 2012;490:61–70.

    Article  Google Scholar 

  57. Chavez-Macgregor M, Liu S, De Melo-Gagliato D, et al. Differences in gene and protein expression and the effects of race/ethnicity on breast cancer subtypes. Cancer Epidemiol Biomarkers Prev. 2013. doi:10.1158/1055-9965.EPI-13-0929.

    PubMed Central  PubMed  Google Scholar 

  58. Sweeney C, Bernard PS, Factor RE, et al. Intrinsic subtypes from PAM50 gene expression assay in a population-based breast cancer cohort: differences by age, race, and tumor characteristics. Cancer Epidemiol Biomarkers Prev. 2014;23:714–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kornegoor R, Verschuur-Maes AHJ, Buerger H, et al. Molecular subtyping of male breast cancer by immunohistochemistry. Mod Pathol. 2011;25:398–404.

    Article  PubMed  Google Scholar 

  60. Blows FM, Driver KE, Schmidt MK, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010;7(5):e1000279. doi:10.1371/journal.pmed.1000279.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Tibshirani R, Hastie T, Narasimhan B, et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci. 2002;99:6567–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Sorlie T. Introducing molecular subtyping of breast cancer into the clinic? J Clin Oncol. 2009;27:1153–4.

    Article  PubMed  Google Scholar 

  63. Dowsett M, Sestak I, Lopez-Knowles E, et al. Comparison of PAM50 risk of recurrence score with Oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31:2783–90.

    Article  PubMed  Google Scholar 

  64. Liu S, Chapman J-AW, Burnell MJ, et al. Prognostic and predictive investigation of PAM50 intrinsic subtypes in the NCIC CTG MA.21 phase III chemotherapy trial. Breast Cancer Res Treat. 2015. doi:10.1007/s10549-014-3259-1.

    Google Scholar 

  65. Nielsen TO, Wallden B, Schaper C. Analytic validation of PAM50-based Prosigna breast cancer prognostic gene signature assay and nCounter analysis system using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. 2014;14:177.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Hansen AR, Bedard PL. Clinical application of high-throughput genomic technologies for treatment selection in breast cancer. Breast Cancer Res. 2013;15:R97.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Gray J, Druker B. The breast cancer landscape. Nature. 2012;486:328–9.

    Article  CAS  PubMed  Google Scholar 

  68. Bliss JM, Kilburn LS, Coleman RE, et al. Disease-related outcomes with long-term follow-up: an updated analysis of the intergroup exemestane study. J Clin Oncol. 2012;30:709–17.

    Article  CAS  PubMed  Google Scholar 

  69. Jensen EV, Jordan VC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003;9:1980–9.

    CAS  PubMed  Google Scholar 

  70. McShane LM, Hayes DF. Publication of tumor marker research results: the necessity for complete and transparent reporting. J Clin Oncol. 2012;30:4223–32.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledged Conflict of Interest

Dr. Carolyn Mies is an employee of Genomic Health, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Mies M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mies, C. (2016). Breast Cancer. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics