Skip to main content

Grind-Hardening Process Modelling

  • Chapter
  • First Online:
Grind Hardening Process

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

Abstract

Grind-hardening process is a complex hybrid process integrating heat treatment process with high material rate grinding. The modelling of the process thus is quite complex and a number of aspects need to be considered. The present chapter presents a holistic model able to predict the grinding forces, temperature distribution, metallurgical changes, surface hardness and residual stresses. The model is composed of a number of sub-models that are also verified experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toenshoff HK, Peters J, Inasaki I, Paul T (1992) Modelling and simulation of grinding processes. CIRP Ann Manuf Technol 41(2):677–688

    Article  Google Scholar 

  2. Salonitis K, Stavropoulos P, Kolios A (2014) External Grind Hardening Forces Modelling and Experimentation. Int J Adv Manuf Technol 70(1–4):523–530

    Article  Google Scholar 

  3. Malkin S (1989) Grinding technology: theory and applications of machining with abrasives. Ellis Horwood, Chichester

    Google Scholar 

  4. Malkin S, Cook NH (1971) The wear of grinding wheels. Part 1. Attritious wear. ASME J Eng Ind 93:1120–1128

    Article  Google Scholar 

  5. Hou ZB, Komanduri R (2003) On the mechanics of the grinding process—Part I. Stochastic nature of the grinding process. Int J Mach Tools Manuf 43:1579–1593

    Article  Google Scholar 

  6. Kannapan S, Malkin S (1972) Effects of grain size and operating parameters on the mechanics of grinding. ASME J Eng Ind 94:833

    Article  Google Scholar 

  7. Lichun L, Jizai F, Peklenik J (1980) A study of grinding force mathematical model. CIRP Ann Manuf Technol 29(1):245–249

    Article  Google Scholar 

  8. Mishra VK, Salonitis K (2013) Empirical estimation of grinding specific forces and energy based on a modified werner grinding model. Procedia CIRP 8:287–292

    Article  Google Scholar 

  9. Lavine AS (1991) Thermal aspects of grinding: the effect of heat generation at the shear planes. CIRP Ann Manuf Technol 40(1):343–345

    Article  Google Scholar 

  10. Lavine AS (2000) An exact solution for surface temperature in down grinding. Int J Heat Mass Transf 43:4447–4456

    Article  MATH  Google Scholar 

  11. Salonitis K, Chryssolouris G (2006) Cooling in grind hardening operations. Int J Adv Manuf Technol 33:285–297

    Article  Google Scholar 

  12. Chryssolouris G, Tsirbas K, Salonitis K (2005) An analytical, numerical and experimental approach to grind hardening. SME J Manuf Process 7(1):1–9

    Article  Google Scholar 

  13. Rowe WB, Morgan MN, Allanson DA (1991) An advance in the modelling of thermal effects in the grinding process. CIRP Ann Manuf Technol 40(1):339–342

    Article  Google Scholar 

  14. Rowe WB, Morgan MN (1993) The effect of deformation on the contact area in grinding. CIRP Ann Manuf Technol 42(1):409–412

    Article  Google Scholar 

  15. Zhou ZX, Van Lutterwelt CA (1992) The real contact length between grinding wheel and workpiece—a new concept and a new measuring method. CIRP Ann Manuf Technol 41(1):387–391

    Article  Google Scholar 

  16. Lavine AS, Malkin S, Jen TC (1989) Thermal aspects of grinding with CBN wheels. CIRP Ann Manuf Technol 38(1):557–560

    Article  Google Scholar 

  17. Rowe WB, Black SCE, Mills B, Qi HS, Morgan MN (1995) Experimental investigation of heat transfer in grinding. CIRP Ann Manuf Technol 44(1):329–332

    Article  Google Scholar 

  18. Rowe WB, Morgan MN, Black SCE, Mills B (1996) A simplified approach to control of thermal damage in grinding. CIRP Ann Manuf Technol 45(1):299–302

    Article  Google Scholar 

  19. Rowe WB, Black SCE, Mills B (1996) Temperature control in CBN grinding. Int J Adv Manuf Technol 12:387–392

    Article  Google Scholar 

  20. Rowe WB, Morgan MN, Black SCE (1998) Validation of thermal properties in grinding. CIRP Ann Manuf Technol 47(1):275–279

    Article  Google Scholar 

  21. Guo C, Malkin S (1992) Heat transfer in grinding. J Mater Process Manuf Sci 1:16–27

    Google Scholar 

  22. Guo C, Malkin S (1994) Analytical and experimental investigation of burnout in creep-feed grinding. CIRP Ann Manuf Technol 43(1):283–286

    Article  Google Scholar 

  23. Guo C, Malkin S (1996) Effectiveness of cooling in grinding. Trans North Am Manuf Res Inst SME 1996 (NAMRI/SME) XXIV:111–116

    Google Scholar 

  24. Guo C, Malkin S (2000) Energy partition and cooling during grinding. SME J Manuf Process 2(3):151–157

    Article  Google Scholar 

  25. Jin T, Cai GQ, Jeong HD, Kim NK (2001) Study on heat transfer in super-high-speed-grinding: energy partition to the workpiece in HEDG. J Mater Process Technol 111:261–264

    Article  Google Scholar 

  26. Toenshoff HK, Brinksmeier E, Choi H-Z (1987) Abrasives and their influence on forces, temperatures, and surface. In: Proceedings of the 15th North American manufacturing research conference, pp 70–89

    Google Scholar 

  27. Rowe WB, Pettit JA, Boyle A, Moruzzi JL (1988) Avoidance of thermal damage in grinding and prediction of the damage threshold. CIRP Ann Manuf Technol 37(1):327–330

    Article  Google Scholar 

  28. Salonitis K, Chryssolouris G (2007) Thermal analysis of grind-hardening process. Int J Manuf Technol Manage 12(1/2/3):72–92

    Google Scholar 

  29. Salonitis K, Chondros T, Chryssolouris G (2008) Grinding wheel effect in the grind-hardening process. Int J Adv Manuf Technol 38(1–2):48–58

    Article  Google Scholar 

  30. Rowe WB (2001) Thermal analysis of high efficiency deep grinding. Int J Mach Tools Manuf 41:1–19

    Article  Google Scholar 

  31. Rowe WB, Jin T (2001) Temperatures in high efficiency deep grinding (HEDG). CIRP Ann Manuf Technol 50(1):205–208

    Article  Google Scholar 

  32. Hahn RS (1962) On the nature of the grinding process. In: Proceedings of the 3rd machine tool design and research conference, pp 129–154

    Google Scholar 

  33. Kim NK, Guo C, Malkin S (1997) Heat flux distribution and energy partition in creep-feed grinding. CIRP Ann Manuf Technol 46(1):227–232

    Article  Google Scholar 

  34. Jin T, Stephenson DJ (2003) Investigation of the heat partitioning in high efficiency deep grinding. Int J Mach Tools Manuf 43:1129–1134

    Article  Google Scholar 

  35. Chang CC, Szeri AZ (1998) A thermal analysis of grinding. Wear 216:77–86

    Article  Google Scholar 

  36. Chiu N, Malkin S (1993) Computer simulation for cylindrical plunge grinding. CIRP Ann Manuf Technol 42(1):383–387

    Article  Google Scholar 

  37. Eda H, Ohmura E, Yamauchi S (1993) Computer visual simulation on structural changes of steel in grinding process and experimental verification. CIRP Ann Manuf Technol 42(1):389–392

    Article  Google Scholar 

  38. Lavine AS (1988) A simple model for convective cooling during the grinding process. J Eng Ind 110:1–6

    Article  Google Scholar 

  39. Snoeys R, Maris M, Peters J (1978) Thermally induced damage in grinding. CIRP Ann Manuf Technol 27:571–579

    Google Scholar 

  40. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, London

    Google Scholar 

  41. Jin T, Cai GQ (2001) Analytical thermal models of oblique moving heat source for deep grinding and cutting. J Manuf Sci Eng 123:185–190

    Article  Google Scholar 

  42. Krauss G (1993) Steels: heat treatment and processing principles, ASM International, Materials Park

    Google Scholar 

  43. Liedtke D, Jonsson R (1996) Warmebehandlung. Expert Verlag

    Google Scholar 

  44. Liedtke D, Jonsson R (1954) Atlas zur Waermebehandlung der Stahle, 1st edn. Verlag stahleisen mbH, Duesseldorf

    Google Scholar 

  45. Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the Austenite-Martensite transformation in Pure Iron-Carbon alloys and plain Carbon steels. Acta Metall 7:59–60

    Article  Google Scholar 

  46. Pollack H (1988) Materials science and metallurgy, 4th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  47. Umbrello D, Ambrogio G, Filice L, Shivpuri G (2008) A hybrid finite element method–artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steel. Mater Des 29:873–883

    Article  Google Scholar 

  48. Mahdi M, Zhang L (1999) Applied mechanics in grinding. Part 7: residual stresses induced by the full coupling of mechanical deformation, thermal deformation and phase transformation. Int J Mach Tools Manuf 39:1285–1298

    Article  Google Scholar 

  49. Mahdi M, Zhang LC (1997) Applied mechanics in grinding-V. Thermal residual stresses. Int J Mach Tools Manuf 37:619–633

    Article  Google Scholar 

  50. Salonitis K (2014) On surface grind hardening induced residual stresses. Procedia CIRP 13:264–269

    Article  Google Scholar 

  51. Salonitis K (2006) A methodology for the prediction of the hardness distribution and the hardness penetration depth caused by grind-hardening process. Ph.D. dissertation, University of Patras, Patras, Greece

    Google Scholar 

  52. Salonitis K, Stavropoulos P, Stournaras A, Chryssolouris G (2007) Finite element modeling of grind hardening process. In: Proceedings of 10th CIRP International Workshop on Modeling of Machining Operations, pp 117–123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Salonitis .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Salonitis, K. (2015). Grind-Hardening Process Modelling. In: Grind Hardening Process. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-19372-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19372-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19371-7

  • Online ISBN: 978-3-319-19372-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics