Skip to main content

Equations of Motion in an Expanding Universe

  • Chapter
  • First Online:
Equations of Motion in Relativistic Gravity

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 179))

Abstract

We make use of an effective field-theoretical approach to derive post-Newtonian equations of motion of hydrodynamical inhomogeneities in cosmology. The matter Lagrangian for the perturbed cosmological model includes dark matter, dark energy, and ordinary baryonic matter. The Lagrangian is expanded in an asymptotic Taylor series around a Friedmann-LemeƮtre-Robertson-Walker background. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the expansion series is gauge-invariant and all of them together form a basis for the successive post-Newtonian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Newtonian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background metric. Temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large-scale inhomogeneities of matter as those generated by the primordial cosmological perturbations in these two components with \(\delta \rho /\rho \le 1\). The small scale inhomogeneities are generated by the baryonic matter which is considered as a bare perturbation of the background gravitational field, dark matter and energy. Mathematically, the large scale structure inhomogeneities are given by the homogeneous solution of the post-Newtonian equations while the small scale inhomogeneities are described by a particular solution of these equations with the stress-energy tensor of the baryonic matter that admits \(\delta \rho /\rho \gg 1\). We explicitly work out the field equations of the first post-Newtonian approximation in cosmology and derive the post-Newtonian equations of motion of the large and small scale inhomogeneities which generalize the covariant law of conservation of stress-energy-momentum tensor of matter in asymptotically-flat spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The fact that \({\mathcal F}\) is a scalar density is essential for the transformation of covariant derivatives to the total divergence. The total divergences can be converted to surface integrals which vanish on the boundary of integration and, hence, can be dropped off the calculations.

References

  1. O.V. Verkhodanov, A.G. Doroshkevich, Advances in Machine Learning and Data Mining for Astronomy, chapter Cosmic Microwave Background Mapping (CRC Press, Taylor & Francis Group, Boca Raton, 2012), pp. 133ā€“159

    Google ScholarĀ 

  2. J. Peacock, Encyclopedia of Astronomy and Astrophysics, chapter Cosmology: Standard Model (2002)

    Google ScholarĀ 

  3. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005), p. 442

    MATHĀ  Google ScholarĀ 

  4. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    MATHĀ  Google ScholarĀ 

  5. D.S. Gorbunov, V.A. Rubakov, Introduction to the Theory of the Early Universe (World Scientific Publishing Company, Singapore, Hackensack, 2011)

    MATHĀ  Google ScholarĀ 

  6. M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, I. Zehavi, N.A. Bahcall, F. Hoyle, D. Schlegel, R. Scoccimarro, M.S. Vogeley, A. Berlind, T. Budavari, A. Connolly, D.J. Eisenstein, D. Finkbeiner, J.A. Frieman, J.E. Gunn, L. Hui, B. Jain, D. Johnston, S. Kent, H. Lin, R. Nakajima, R.C. Nichol, J.P. Ostriker, A. Pope, R. Scranton, U. Seljak, R.K. Sheth, A. Stebbins, A.S. Szalay, I. Szapudi, Y. Xu, J. Annis, J. Brinkmann, S. Burles, F.J. Castander, I. Csabai, J. Loveday, M. Doi, M. Fukugita, B. Gillespie, G. Hennessy, D.W. Hogg, Ž. Ivezić, G.R. Knapp, D.Q. Lamb, B.C. Lee, R.H. Lupton, T.A. McKay, P. Kunszt, J.A. Munn, L. Oā€™Connell, J. Peoples, J.R. Pier, M. Richmond, C. Rockosi, D.P. Schneider, C. Stoughton, D.L. Tucker, D.E. vanden Berk, B. Yanny, D.G. York, Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69(10), 103501 (2004)

    Google ScholarĀ 

  7. Planck Collaboration, P.A.R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A.J. Planck Banday et al., Planck 2013 results. XVI. Cosmological parameters, ArXiv e-prints, March 2013

    Google ScholarĀ 

  8. Planck Collaboration, P.A.R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A.J. Planck Banday et al., Planck 2013 results. XXIV. Constraints on primordial non-gaussianity, ArXiv e-prints, March 2013

    Google ScholarĀ 

  9. J.-L. Lehners, P.J. Steinhardt, Planck 2013 results support the cyclic universe. Phys. Rev. D 87(12), 123533 (2013)

    ADSĀ  Google ScholarĀ 

  10. A.R. Liddle, D.H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000)

    MATHĀ  Google ScholarĀ 

  11. A. Krasiński, C. Hellaby, Structure formation in the LemaĆ®tre-Tolman model. Phys. Rev. D 65(2), 023501 (2002)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  12. A. Krasiński, C. Hellaby, Formation of a galaxy with a central black hole in the LemaĆ®tre-Tolman model. Phys. Rev. D 69(4), 043502 (2004)

    ADSĀ  Google ScholarĀ 

  13. P. Jacewicz, A. Krasiński, Formation of Gyrs old black holes in the centers of galaxies within the LemaĆ®tre-Tolman model. Gen. Relativ. Gravit. 44, 81ā€“105 (2012)

    ADSĀ  MATHĀ  Google ScholarĀ 

  14. V.A. Fock, The Theory of Space, Time and Gravitation (Pergamon Press, Oxford, 1964)

    MATHĀ  Google ScholarĀ 

  15. A. Papapetrou, Equations of motion in general relativity. Proc. Phys. Soc. A 64, 57ā€“75 (1951)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. S. Chandrasekhar, Y. Nutku, The second post-Newtonian equations of hydrodynamics in general relativity. Astrophys. J. 158, 55 (1969)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  17. S. Chandrasekhar, F.P. Esposito, The 2\(\frac{1}{2}\)-post-Newtonian equations of hydrodynamics and radiation reaction in general relativity. Astrophys. J. 160, 153 (1970)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  18. J.L. Anderson, T.C. Decanio, Equations of hydrodynamics in general relativity in the slow motion approximation. Gen. Relativ. Gravit. 6, 197ā€“237 (1975)

    ADSĀ  MATHĀ  Google ScholarĀ 

  19. N. Spyrou, Relativistic celestial mechanics of binary stars. Gen. Relativ. Gravit. 13, 473ā€“485 (1981)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. S.M. Kopeikin, General relativistic equations of binary motion for extended bodies with conservative corrections and radiation damping. Sov. Astron. 29, 516ā€“524 (1985)

    ADSĀ  Google ScholarĀ 

  21. R.A. Breuer, E. Rudolph, The force law for the dynamic two-body problem in the second post-Newtonian approximation of general relativity. Gen. Relativ. Gravit. 14, 181ā€“211 (1982)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  22. R.A. Breuer, E. Rudolph, Radiation reaction and energy loss in the post-Newtonian approximation of general relativity. Gen. Relativ. Gravit. 13, 777ā€“793 (1981)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  23. S.T. Shapiro, A.P. Lightman, Rapidly rotating, post-Newtonian neutron stars. Astrophys. J. 207, 263ā€“278 (1976)

    ADSĀ  Google ScholarĀ 

  24. I. Ciufolini, R. Ruffini, Equilibrium configurations of neutron stars and the parametrized post-Newtonian metric theories of gravitation. Astrophys. J. 275, 867ā€“877 (1983)

    ADSĀ  Google ScholarĀ 

  25. S.L. Shapiro, S. Zane, Bar mode instability in relativistic rotating stars: A post-Newtonian treatment. Astrophys. J. Suppl. 117, 531 (1998)

    ADSĀ  Google ScholarĀ 

  26. M. Takada, T. Futamase, A post-Newtonian Lagrangian perturbation approach to large-scale structure formation. Mon. Not. R. Astron. Soc. 306, 64ā€“88 (1999)

    ADSĀ  Google ScholarĀ 

  27. W. Petry, Cosmological post-Newtonian approximation in flat space-time theory of gravitation. Astrophys. Space Sci. 272(4), 353ā€“368 (2000)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  28. P. Szekeres, T. Rainsford, Post-newtonian cosmology. Gen. Relativ. Gravit. 32, 479ā€“490 (2000)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  29. J.-C. Hwang, H. Noh, D. Puetzfeld, Cosmological non-linear hydrodynamics with post-Newtonian corrections. J. Cosmol. Astropart. Phys. 3, 10 (2008)

    ADSĀ  Google ScholarĀ 

  30. T.A. Oliynyk, Cosmological post-Newtonian expansions to arbitrary order. Commun. Math. Phys. 295, 431ā€“463 (2010)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  31. T.A. Oliynyk, The fast Newtonian limit for perfect fluids. Adv. Theor. Math. Phys. 16(2), 359ā€“391 (2012)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  32. S.M. Kopeikin, The speed of gravity in general relativity and theoretical interpretation of the Jovian deflection experiment. Class. Quantum Gravity 21, 3251ā€“3286 (2004)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  33. J.L. Anderson, R.E. Kates, L.S. Kegeles, R.G. Madonna, Divergent integrals of post-Newtonian gravity: nonanalytic terms in the near-zone expansion of a gravitationally radiating system found by matching. Phys. Rev. D 25, 2038ā€“2048 (1982)

    ADSĀ  Google ScholarĀ 

  34. L. Blanchet, Post-Newtonian gravitational radiation, in Einsteinā€™s Field Equations and Their Physical Implications. Lecture Notes in Physics, vol. 540, ed. by B.G. Schmidt (Springer, Berlin, 2000), p. 225

    Google ScholarĀ 

  35. G. SchƤfer, Post-Newtonian methods: analytic results on the binary problem. In: L. Blanchet, A. Spallicci and B. Whiting (Eds.), Mass and Motion in General Relativity. Fundam. Theor. Phys. 162, 167ā€“210 (2011)

    Google ScholarĀ 

  36. T. Buchert, Dark energy from structure: a status report. Gen. Relativ. Gravit. 40, 467ā€“527 (2008)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  37. E.W. Kolb, V. Marra, S. Matarrese, Description of our cosmological spacetime as a perturbed conformal Newtonian metric and implications for the backreaction proposal for the accelerating universe. Phys. Rev. D 78(10), 103002 (2008)

    ADSĀ  Google ScholarĀ 

  38. E.W. Kolb, V. Marra, S. Matarrese, Cosmological background solutions and cosmological backreactions. Gen. Relat. Gravit. 42, 1399ā€“1412 (2010)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  39. Stephen R. Green, Robert M. Wald, New framework for analyzing the effects of small scale inhomogeneities in cosmology. Phys. Rev. D 83, 084020 (2011)

    ADSĀ  Google ScholarĀ 

  40. S.R. Green, R.M. Wald, Newtonian and relativistic cosmologies. Phys. Rev. D 85(6), 063512 (2012)

    ADSĀ  Google ScholarĀ 

  41. A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009ā€“1038 (1998)

    ADSĀ  Google ScholarĀ 

  42. S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch and Supernova Cosmology Project, Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565ā€“586 (1999)

    Google ScholarĀ 

  43. R. Zalaletdinov, The averaging problem in cosmology and macroscopic gravity. Int. J. Mod. Phys. A 23, 1173ā€“1181 (2008)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  44. T. Futamase, Averaging of a locally inhomogeneous realistic universe. Phys. Rev. D 53, 681ā€“689 (1996)

    ADSĀ  Google ScholarĀ 

  45. C. Clarkson, G. Ellis, J. Larena, O. Umeh, Does the growth of structure affect our dynamical models of the universe? The averaging, backreaction and fitting problems in cosmology. Rep. Prog. Phys. 74, 112901 (2011)

    MathSciNetĀ  Google ScholarĀ 

  46. S. Kopeikin, M. Efroimsky, G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, Weinheim, 2011)

    MATHĀ  Google ScholarĀ 

  47. G.F.R. Ellis, Inhomogeneity effects in cosmology. Class. Quantum Gravity 28(16), 164001 (2011)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  48. S.M. Kopeikin, A.N. Petrov, Post-Newtonian celestial dynamics in cosmology: field equations. Phys. Rev. D 87(4), 044029 (2013)

    ADSĀ  Google ScholarĀ 

  49. E.M. Lifshitz, I.M. Khalatnikov, Special issue: problems of relativistic cosmology. Sov. Phys. Uspekhi 6, 495ā€“522 (1964)

    ADSĀ  Google ScholarĀ 

  50. E. Lifshitz, On the gravitational stability of the expanding universe. JETP 10, 116ā€“129 (1946). http://www.citebase.org/abstract?id=oai

  51. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google ScholarĀ 

  52. J.M. Bardeen, Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882ā€“1905 (1980)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  53. H. Kodama, M. Sasaki, Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1 (1984)

    ADSĀ  Google ScholarĀ 

  54. A. Ishibashi, R.M. Wald, Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quantum Gravity 23, 235ā€“250 (2006)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  55. R. Baierlein, Representing a vector field: Helmholtzā€™s theorem derived from a Fourier identity. Am. J. Phys. 63, 180ā€“182 (1995)

    ADSĀ  Google ScholarĀ 

  56. V.A. Brumberg, Essential Relativistic Celestial Mechanics (Adam Hilger, Bristol, 1991), p. 271

    MATHĀ  Google ScholarĀ 

  57. G.F.R. Ellis, M. Bruni, Covariant and gauge-invariant approach to cosmological density fluctuations. Phys. Rev. D 40, 1804ā€“1818 (1989)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  58. G.F.R. Ellis, J. Hwang, M. Bruni, Covariant and gauge-independent perfect-fluid Robertson-Walker perturbations. Phys. Rev. D 40, 1819ā€“1826 (1989)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  59. C.G. Tsagas, A. Challinor, R. Maartens, Relativistic cosmology and large-scale structure. Phys. Rep. 465, 61ā€“147 (2008)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  60. S. Shandarin, S. Habib, K. Heitmann, Cosmic web, multistream flows, and tessellations. Phys. Rev. D 85(8), 083005 (2012)

    ADSĀ  Google ScholarĀ 

  61. W. Del Pozzo, Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers. Phys. Rev. D 86(4), 043011 (2012)

    ADSĀ  Google ScholarĀ 

  62. S.R. Taylor, J.R. Gair, I. Mandel, Cosmology using advanced gravitational-wave detectors alone. Phys. Rev. D 85(2), 023535 (2012)

    ADSĀ  Google ScholarĀ 

  63. M. Kramer, N. Wex, The double pulsar system: a unique laboratory for gravity. Class. Quantum Gravity 26(7), 073001 (2009)

    ADSĀ  MATHĀ  Google ScholarĀ 

  64. J.M. Weisberg, D.J. Nice, J.H. Taylor, Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030ā€“1034 (2010)

    ADSĀ  Google ScholarĀ 

  65. M. Kramer, Pulsars, SKA and time-domain studies in the future, in IAU Symposium, ed. by E. Griffin, R. Hanisch, R. Seaman, vol. 285, pp. 147ā€“152, April 2012

    Google ScholarĀ 

  66. S.M. Kopeikin, Celestial ephemerides in an expanding universe. Phys. Rev. D 86(6), 064004 (2012)

    ADSĀ  Google ScholarĀ 

  67. S. Hojman, Problem of the identical vanishing of Euler-Lagrange derivatives in field theory. Phys. Rev. D 27, 451ā€“453 (1983)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  68. N.V. Mitskevich, Physical Fields in General Relativity (Nauka, Moscow, 1969), p. 326

    Google ScholarĀ 

  69. W. Greiner, J. Reinhardt, Field Quantization (Springer, Berlin, 1996). Translated from the German. With a foreword by D.A. Bromley

    MATHĀ  Google ScholarĀ 

  70. A.D. Popova, A.N. Petrov, Exact dynamic theories on a given background in gravitation. Int. J. Mod. Phys. A 3, 2651ā€“2679 (1988)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  71. B. Schutz, Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1980)

    MATHĀ  Google ScholarĀ 

  72. A.N. Petrov, Nœther and Belinfante corrected types of currents for perturbations in the Einstein-Gauss-Bonnet gravity. Class. Quantum Gravity 28(21), 215021 (2011)

    ADSĀ  MATHĀ  Google ScholarĀ 

  73. L.P. Grishchuk, A.N. Petrov, A.D. Popova, Exact theory of the (Einstein) gravitational field in an arbitrary background space-time. Commun. Math. Phys. 94, 379ā€“396 (1984)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  74. C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993), p. 396

    MATHĀ  Google ScholarĀ 

  75. E. Bertschinger, Testing dark matter models with the phase space structure of dark matter halos, in Probes of Dark Matter on Galaxy Scales, p. 10001 (2013)

    Google ScholarĀ 

  76. I. Zlatev, L. Wang, P.J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896ā€“899 (1999)

    ADSĀ  Google ScholarĀ 

  77. B.F. Schutz, Perfect fluids in general relativity: velocity potentials and a variational principle. Phys. Rev. D 2, 2762ā€“2773 (1970)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  78. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)

    Google ScholarĀ 

  79. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1975)

    MATHĀ  Google ScholarĀ 

  80. L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, Cambridge, 2010)

    MATHĀ  Google ScholarĀ 

Download references

Acknowledgments

Sergei Kopeikin thanks the Center of Applied Space Technology and Microgravity (ZARM) of the University of Bremen for providing partial financial support for travel and Physikzentrum at Bad Honnef (Germany) for hospitality and accommodation. The work of Sergei Kopeikin has been supported by the grant 14-27-00068 of the Russian Scientific foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei M. Kopeikin .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Hilbert and Einstein Lagrangians

We define the Christoffel symbols of the second kind as usual [46]

$$\begin{aligned} \Gamma ^\alpha {}_{\beta \gamma }\equiv & {} \frac{1}{2} g^{\alpha \delta }\left(g_{\delta \beta ,\gamma }+g_{\delta \gamma ,\beta }-g_{\beta \gamma ,\delta }\right).\end{aligned}$$
(261)

The Christoffel symbols of the first type

$$\begin{aligned} \Gamma _{\alpha \beta \gamma }= & {} g_{\alpha \sigma }\Gamma ^\sigma {}_{\beta \gamma }=\frac{1}{2}\left(g_{\alpha \beta ,\gamma }+g_{\alpha \gamma ,\beta }-g_{\beta \gamma ,\alpha }\right),\end{aligned}$$
(262)

We notice the symmetry with respect to the last two indices \(\Gamma _{\alpha \beta \gamma }=\Gamma _{\alpha (\beta \gamma )}\). There is no any symmetry with respect to the first two indices. In general,

$$\begin{aligned} \Gamma _{\alpha \beta \gamma }= & {} \Gamma _{(\alpha \beta )\gamma }+\Gamma _{[\alpha \beta ]\gamma }, \end{aligned}$$
(263)

where

$$\begin{aligned} \Gamma _{(\alpha \beta )\gamma }=\frac{1}{2} g_{\alpha \beta ,\gamma },\qquad \Gamma _{[\alpha \beta ]\gamma }=\frac{1}{2} \left(g_{\gamma \alpha ,\beta }-g_{\gamma \beta ,\alpha }\right), \end{aligned}$$
(264)

There are two, particularly useful symbols that are obtained by contracting indices of the Christoffel symbols of the first kind. They are denoted as

$$\begin{aligned} \mathcal{Y}_\alpha \equiv \Gamma ^\beta {}_{\alpha \beta },\qquad \mathcal{Y}^\alpha =g^{\alpha \beta }\mathcal{Y}_\beta ,\end{aligned}$$
(265)

and

$$\begin{aligned} \Gamma ^\alpha \equiv g^{\beta \gamma }\Gamma ^\alpha {}_{\beta \gamma },\qquad \Gamma _\alpha =g_{\alpha \beta }\Gamma ^\beta ,\end{aligned}$$
(266)

Direct inspection shows that

$$\begin{aligned} \mathcal{Y}_\alpha= & {} =\frac{1}{2} g^{\beta \gamma }g_{\beta \gamma ,\alpha }=\left(\ln {\sqrt{-g}}\right)_{,\alpha }.\end{aligned}$$
(267)

The two symbols are interrelated

$$\begin{aligned} \Gamma _\alpha= & {} -\mathcal{Y}_a+g^{\beta \gamma }g_{\alpha \beta ,\gamma },\end{aligned}$$
(268)
$$\begin{aligned} \Gamma ^\alpha= & {} -\mathcal{Y}^a-g^{\alpha \beta }{}_{,\beta },\end{aligned}$$
(269)

We define the Riemann tensor as follows [46]

$$\begin{aligned} R^\alpha {}_{\mu \beta \nu }= & {} \Gamma ^\alpha {}_{\mu \nu ,\beta }-\Gamma ^\alpha {}_{\mu \beta ,\nu }+\Gamma ^\alpha {}_{\beta \gamma }\Gamma ^\gamma {}_{\mu \nu }-\Gamma ^\alpha {}_{\nu \gamma }\Gamma ^\gamma {}_{\mu \beta }. \end{aligned}$$
(270)

Second covariant derivatives of tensors do not commute due to the curvature of spacetime. For example, denoting the covariant derivatives with a vertical bar we have for a covector field \({\mathcal F}_\alpha \) and a covariant tensor of second rank, \({\mathcal F}_{\alpha \beta }\) the following commutation relations

$$\begin{aligned} {\mathcal F}_{\alpha |\beta \gamma }= & {} {\mathcal F}_{\alpha |\gamma \beta }+R^\mu {}_{\alpha \beta \gamma }{\mathcal F}_\mu ,\end{aligned}$$
(271)
$$\begin{aligned} {\mathcal F}_{\alpha \beta |\gamma \delta }= & {} {\mathcal F}_{\alpha \beta |\delta \gamma }+R^\mu {}_{\alpha \gamma \delta }{\mathcal F}_{\mu \beta }+R^\mu {}_{\beta \gamma \delta }{\mathcal F}_{\alpha \mu }. \end{aligned}$$
(272)

Riemann tensor can be also expressed in terms of the second partial derivatives of the metric tensor and the Christoffel symbols

$$\begin{aligned} R_{\alpha \mu \beta \nu }=\frac{1}{2}\left(g_{\mu \beta ,\alpha \nu }+g_{\nu \alpha ,\beta \mu }-g_{\alpha \beta ,\mu \nu }-g_{\mu \nu ,\alpha \beta } \right)+\Gamma _{\rho \mu \beta }\Gamma ^\rho {}_{\alpha \nu }-\Gamma _{\rho \mu \nu }\Gamma ^\rho {}_{\alpha \beta }. \end{aligned}$$
(273)

Contraction of two indices in the Riemann tensor yields the Ricci tensor

$$\begin{aligned} R_{\mu \nu }= & {} \Gamma ^\alpha {}_{\mu \nu ,\alpha }-\mathcal{Y}_{\mu ,\nu }+\mathcal{Y}_\gamma \Gamma ^\gamma {}_{\mu \nu }-\Gamma ^\alpha {}_{\nu \gamma }\Gamma ^\gamma {}_{\mu \alpha },\end{aligned}$$
(274)

or, in terms of the second derivatives from the metric tensor and the Christoffel symbols,

$$\begin{aligned} R_{\mu \nu }=\frac{1}{2}g^{\kappa \epsilon }\left(g_{\mu \kappa ,\epsilon \nu }+g_{\nu \kappa ,\epsilon \mu }-g_{\kappa \epsilon ,\mu \nu }-g_{\mu \nu ,\kappa \epsilon }\right) +g^{\kappa \epsilon }\Gamma _{\rho \mu \epsilon }\Gamma ^\rho {}_{\kappa \nu }-\Gamma _{\rho \mu \nu }\Gamma ^\rho . \end{aligned}$$
(275)

One more contraction of indices in the Ricci tensor brings about the Ricci scalar which we shall write down in the form suggested by Fock [14, Appendix B]

$$\begin{aligned} R= & {} L+{\mathcal Y}_\alpha \Gamma ^\alpha -{\mathcal Y}_\alpha {\mathcal Y}^\alpha +\Gamma ^\alpha {}_{,\alpha }-{\mathcal Y}^\alpha {}_{,\alpha }, \end{aligned}$$
(276)

where

$$\begin{aligned} L= & {} g^{\mu \nu }\left(\Gamma ^\alpha {}_{\nu \gamma }\Gamma ^\gamma {}_{\mu \alpha }-{\mathcal Y}_\alpha \Gamma ^\alpha {}_{\mu \nu }\right), \end{aligned}$$
(277)

is (upĀ to a constant factor) the gravitational Lagrangian introduced by Einstein [79] as an alternative to the gravitational Lagrangian, R, of Hilbert. The Hilbert Lagrangian is the Ricci scalar which depends on the second derivatives of the metric tensor while the Einstein Lagrangian does not.

The two Lagrangians are interrelated

$$\begin{aligned} R=L+\left(-g\right)^{-1/2}\mathcal{A}^\alpha {}_{,\alpha }, \end{aligned}$$
(278)

where

$$\begin{aligned} \mathcal{A}^\alpha =\sqrt{-g}\left(\Gamma ^\alpha -{\mathcal Y}^\alpha \right), \end{aligned}$$
(279)

is a vector density of weight \(+1\). After performing differentiation in (278), and accounting for (265) we can easily prove that (278) reproduces (276).

One more form of relation between R and L will be useful for calculating the variational derivative in Appendix section ā€œVariational Derivative from the Hilbert Lagrangianā€. To this end we introduce a new notation

$$\begin{aligned} \Gamma\equiv & {} \Gamma ^\alpha {}_{,\alpha }+{\mathcal Y}_\alpha \Gamma ^\alpha ,\end{aligned}$$
(280)

and notice that

$$\begin{aligned} g^{\alpha \beta }{\mathcal Y}_{\alpha ,\beta }= & {} {\mathcal Y}^\alpha {}_{,\alpha }+{\mathcal Y}_\alpha \Gamma ^\alpha +{\mathcal Y}_\alpha {\mathcal Y}^\alpha , \end{aligned}$$
(281)

EquationsĀ (280), (281) allows us to cast (276) to the following form

$$\begin{aligned} R= & {} L+\Gamma +{\mathcal Y}_\alpha \Gamma ^\alpha -g^{\alpha \beta }{\mathcal Y}_{\alpha ,\beta }, \end{aligned}$$
(282)

that was found by Fock [14, Appendix B].

Appendix 2: Variational Derivatives

1.1 Variational Derivative from the Hilbert Lagrangian

The goal of this section is to prove relation (45) being valid on the background manifold \({\bar{{\mathcal M}}}\). We shall omit the bar over the background geometric objects as it does not bring about confusion. We notice that the Hilbert Lagrangian density, \({{\mathcal L}}^\mathrm{\scriptscriptstyle G}=-(16\pi )^{-1}\sqrt{-g}R\), differs from \({{\mathcal L}}^\mathrm{\scriptscriptstyle E}=-(16\pi )^{-1}\sqrt{-g}L\) by a total derivative that is a consequence of (278). Due to relation (9) the Lagrangian derivatives from \({{\mathcal L}}^\mathrm{\scriptscriptstyle G}\) and \({{\mathcal L}}^\mathrm{\scriptscriptstyle E}\) coincides

$$\begin{aligned} \frac{\delta {{\mathcal L}}^\mathrm{\scriptscriptstyle G}}{\delta \mathfrak {g}^{\mu \nu }}=\frac{\delta {{\mathcal L}}^\mathrm{\scriptscriptstyle E}}{\delta \mathfrak {g}^{\mu \nu }}, \end{aligned}$$
(283)

thus, pointing out that we can safely operate with the Einstein Lagrangian density \({{\mathcal L}}^\mathrm{\scriptscriptstyle E}\). Because of (35), we have

$$\begin{aligned} \frac{\delta {{\mathcal L}}^\mathrm{\scriptscriptstyle E}}{\delta \mathfrak {g}^{\mu \nu }}=\frac{1}{\sqrt{-g}}A^{\rho \sigma }_{\mu \nu }\frac{\delta {{\mathcal L}}^\mathrm{\scriptscriptstyle E}}{\delta g^{\rho \sigma }}, \end{aligned}$$
(284)

which suggests that calculation of the variational derivative with respect to the metric tensor is sufficient.

Calculation of the variational derivative \(\delta {{\mathcal L}}^\mathrm{\scriptscriptstyle E}/\delta g^{\rho \sigma }\) demands the partial derivatives of the contravariant metric and Christoffel symbols with respect to \(g^{\mu \nu }\). The partial derivatives of the metric are calculated with the help of (37), (30). The Christoffel symbols are given in terms of the partial derivatives from covariant metric tensor, \(g_{\alpha \beta ,\gamma }\) which are not conjugated with the dynamic variable \(g^{\alpha \beta }\). Thus, calculation of the partial derivative with respect to \(g^{\mu \nu }\) from the Christoffel symbols demands its transformation to the form where the conjugated variables \(g^{\alpha \beta }{}_{,\gamma }\) are used instead. This form of the Christoffel symbols is

$$\begin{aligned} \Gamma ^\alpha {}_{\beta \gamma }=\frac{1}{2} \left(g^{\rho \kappa }{}_{,\sigma }g^{\alpha \sigma }g_{\rho \beta }g_{\kappa \gamma }-g^{\alpha \sigma }{}_{,\beta }g_{\gamma \sigma }-g^{\alpha \sigma }{}_{,\gamma }g_{\beta \sigma }\right). \end{aligned}$$
(285)

Taking the partial derivative of (285) with respect to the contravariant metric yields

$$\begin{aligned} \frac{\partial \Gamma ^\alpha {}_{\beta \gamma }}{\partial g^{\mu \nu }}=-g^{\alpha \sigma }\left\rbrace \Gamma _{[\sigma \beta ](\mu }g_{\nu )\gamma }+\Gamma _{[\sigma \gamma ](\mu }g_{\nu )\beta }+\Gamma _{(\beta \gamma )(\mu }g_{\nu )\sigma }\right\lbrace , \end{aligned}$$
(286)

and

$$\begin{aligned} \frac{\partial {\mathcal Y}_\alpha }{\partial g^{\mu \nu }}=-\Gamma _{(\mu \nu )\alpha }, \end{aligned}$$
(287)

where we have used (263). Contracting (286), (287) with the Christoffel symbols and the metric tensor results in

$$\begin{aligned} g^{\sigma \gamma }\frac{\partial \Gamma ^\alpha {}_{\beta \gamma }}{\partial g^{\mu \nu }}\Gamma ^\beta {}_{\sigma \alpha }= & {} -2\Gamma ^\alpha {}_{\beta \mu }\Gamma ^\beta {}_{\nu \alpha },\end{aligned}$$
(288)
$$\begin{aligned} g^{\sigma \gamma }\frac{\partial {\mathcal Y}_\beta }{\partial g^{\mu \nu }}\Gamma ^\beta {}_{\sigma \gamma }= & {} -\Gamma _{(\mu \nu )\alpha }\Gamma ^\alpha ,\end{aligned}$$
(289)
$$\begin{aligned} g^{\sigma \gamma }\frac{\partial \Gamma ^\beta {}_{\sigma \gamma }}{\partial g^{\mu \nu }}{\mathcal Y}_\beta= & {} \Gamma _{(\mu \nu )\alpha }{\mathcal Y}^\alpha -\Gamma _{\alpha \mu \nu }{\mathcal Y}^\alpha -{\mathcal Y}_\mu {\mathcal Y}_\nu . \end{aligned}$$
(290)

Partial derivatives of the Christoffel symbols with respect to the metric derivatives are calculated from (285) with the help of (38). We get

$$\begin{aligned} \frac{\partial \Gamma ^\alpha {}_{\beta \gamma }}{\partial g^{\mu \nu }{}_{,\rho }}= & {} \frac{1}{2}\left[g^{\rho \alpha }g_{\beta (\mu }g_{\nu )\gamma }-\delta ^\rho _\gamma \delta ^\alpha _{(\mu }g_{\nu )\beta }-\delta ^\rho _\beta \delta ^\alpha _{(\mu }g_{\nu )\gamma }\right],\end{aligned}$$
(291)
$$\begin{aligned} \frac{\partial \mathcal{Y}_\beta }{\partial g^{\mu \nu }{}_{,\rho }}= & {} -\frac{1}{2}g_{\mu \nu }\delta ^\rho _\beta . \end{aligned}$$
(292)

Contracting (291), (292) with the Christoffel symbols and the metric tensor resultsĀ in

$$\begin{aligned} g^{\sigma \gamma }\frac{\partial \Gamma ^\alpha {}_{\beta \gamma }}{\partial g^{\mu \nu }{}_{,\rho }}\Gamma ^\beta {}_{\sigma \alpha }= & {} -\frac{1}{2}\Gamma ^\rho {}_{\mu \nu },\end{aligned}$$
(293)
$$\begin{aligned} g^{\sigma \gamma }\frac{\partial {\mathcal Y}_\beta }{\partial g^{\mu \nu }{}_{,\rho }}\Gamma ^\beta {}_{\sigma \gamma }= & {} -\frac{1}{2} g_{\mu \nu }\Gamma ^\rho ,\end{aligned}$$
(294)
$$\begin{aligned} g^{\sigma \gamma }\frac{\partial \Gamma ^\beta {}_{\sigma \gamma }}{\partial g^{\mu \nu }{}_{,\rho }}{\mathcal Y}_\beta= & {} \frac{1}{2} g_{\mu \nu }{\mathcal Y}^\rho -\delta ^\rho {}_{(\mu }{\mathcal Y}_{\nu )}. \end{aligned}$$
(295)

Explicit expression for the variational derivative of the Einstein Lagrangian is

$$\begin{aligned} -16\pi \frac{\delta {{\mathcal L}}^\mathrm{\scriptscriptstyle E}}{\delta g^{\mu \nu }}= & {} \left(\frac{\partial \sqrt{-g}}{\partial g^{\mu \nu }}g^{\sigma \gamma }+\sqrt{-g}\frac{\partial g^{\sigma \gamma }}{\partial g^{\mu \nu }}\right)\left(\Gamma ^\alpha {}_{\beta \gamma }\Gamma ^\beta {}_{\sigma \alpha }-{\mathcal Y}_\beta \Gamma ^\beta {}_{\sigma \gamma }\right)\\\nonumber+ & {} \sqrt{-g}g^{\sigma \gamma }\left(2\frac{\partial \Gamma ^\alpha {}_{\beta \gamma }}{\partial g^{\mu \nu }}\Gamma ^\beta {}_{\sigma \alpha }-\frac{\partial {\mathcal Y}_\beta }{\partial g^{\mu \nu }}\Gamma ^\beta {}_{\sigma \gamma }-\frac{\partial \Gamma ^\beta {}_{\sigma \gamma }}{\partial g^{\mu \nu }}{\mathcal Y}_\beta \right)\\\nonumber- & {} \frac{\partial }{\partial x^\rho }\left[\sqrt{-g}g^{\sigma \gamma }\left(2\frac{\partial \Gamma ^\alpha {}_{\beta \gamma }}{\partial g^{\mu \nu }{}_{,\rho }}\Gamma ^\beta {}_{\sigma \alpha }-\frac{\partial {\mathcal Y}_\beta }{\partial g^{\mu \nu }{}_{,\rho }}\Gamma ^\beta {}_{\sigma \gamma }-\frac{\partial \Gamma ^\beta {}_{\sigma \gamma }}{\partial g^{\mu \nu }{}_{,\rho }}{\mathcal Y}_\beta \right)\right] \end{aligned}$$
(296)

Replacing the partial derivatives in (296) with the corresponding right sides of Eqs.Ā (37), (30), (293)ā€“(295) and taking the partial derivative with respect to spatial coordinates, yields

$$\begin{aligned} -16\pi \frac{\delta {{\mathcal L}}^\mathrm{\scriptscriptstyle E}}{\delta g^{\mu \nu }}=\sqrt{-g}\left(R_{\mu \nu }-\frac{1}{2} g_{\mu \nu }R\right), \end{aligned}$$
(297)

where we have used expressions (274), (276) for the Ricci tensor and Ricci scalar respectively. Substituting Eq.Ā (297) to (284) yields

$$\begin{aligned} \frac{\delta {{\mathcal L}}^\mathrm{\scriptscriptstyle E}}{\delta \mathfrak {g}^{\mu \nu }}=-\frac{1}{16\pi }R_{\mu \nu }. \end{aligned}$$
(298)

1.2 Variational Derivatives of Dynamic Variables with Respect to the Metric Tensor

1.2.1 Variational Derivatives of Dark Matter Variables

The primary thermodynamic variable of dark matter is \(\mu _\mathrm{m}\) defined in (125). Variational derivative from \(\mu _\mathrm{m}\) is calculated directly from its definition and yields

$$\begin{aligned} \frac{\delta {\bar{\mu }}_\mathrm{m}}{\delta \bar{g}_{\mu \nu }}=\frac{1}{2}{\bar{\mu }}_\mathrm{m}\bar{u}^\mu \bar{u}^\nu . \end{aligned}$$
(299)

Variational derivative of pressure \(\bar{p}_\mathrm{m}\) is obtained from thermodynamic relation (121a) by making use of the chain differentiation rule along with (299), that is

$$\begin{aligned} \frac{\delta \bar{p}_\mathrm{m}}{\delta \bar{g}_{\mu \nu }}=\frac{1}{2}\bar{\rho }_\mathrm{m}{\bar{\mu }}_\mathrm{m}\bar{u}^\mu \bar{u}^\nu . \end{aligned}$$
(300)

Variational derivative of the rest mass and energy density are obtained by making use of (299) along with equation of state that allows us to express partial derivatives of \(\rho _\mathrm{m}\) and \(\epsilon _\mathrm{m}\) in terms of the variational derivative for \(\mu _\mathrm{m}\). More specifically,

$$\begin{aligned} \frac{\delta \bar{\rho }_\mathrm{m}}{\delta \bar{g}_{\mu \nu }}= & {} \frac{1}{2}\frac{c^2}{c^2_\mathrm{s}}\bar{\rho }_\mathrm{m}\bar{u}^\mu \bar{u}^\nu ,\end{aligned}$$
(301)
$$\begin{aligned} \frac{\delta {\bar{\epsilon }}_\mathrm{m}}{\delta \bar{g}_{\mu \nu }}= & {} \frac{1}{2}\frac{c^2}{c^2_\mathrm{s}}\bar{\rho }_\mathrm{m}{\bar{\mu }}_\mathrm{m}\bar{u}^\mu \bar{u}^\nu \end{aligned}$$
(302)

where the speed of sound appears explicitly. Variational derivatives from products and/or ratios of the thermodynamic quantities are calculated my applying the chain rule of differentiation and the above equations,

$$\begin{aligned} \frac{\delta \left(\bar{\rho }_\mathrm{m}{\bar{\mu }}_\mathrm{m}\right)}{\delta \bar{g}_{\mu \nu }}= & {} \frac{1}{2}\left(1+\frac{c^2}{c^2_\mathrm{s}}\right)\bar{\rho }_\mathrm{m}{\bar{\mu }}_\mathrm{m}\bar{u}^\mu \bar{u}^\nu ,\end{aligned}$$
(303)
$$\begin{aligned} \frac{\delta }{\delta \bar{g}_{\mu \nu }}\left(\frac{\bar{\rho }_\mathrm{m}}{{\bar{\mu }}_\mathrm{m}}\right)= & {} -\frac{1}{2}\left(1-\frac{c^2}{c^2_\mathrm{s}}\right)\frac{\bar{\rho }_\mathrm{m}}{{\bar{\mu }}_\mathrm{m}}\bar{u}^\mu \bar{u}^\nu ,\end{aligned}$$
(304)
$$\begin{aligned} \frac{\delta \left(\bar{p}_\mathrm{m}-{\bar{\epsilon }}_\mathrm{m}\right)}{\delta \bar{g}_{\mu \nu }}= & {} \frac{1}{2}\left(1-\frac{c^2}{c^2_\mathrm{s}}\right)\bar{\rho }_\mathrm{m}{\bar{\mu }}_\mathrm{m}\bar{u}^\mu \bar{u}^\nu . \end{aligned}$$
(305)

1.2.2 Variational Derivatives of Dark Energy Variables

The primary thermodynamic variable of dark energy is \({\bar{\mu }}_\mathrm{q}\) defined in (125). Variational derivative from \({\bar{\mu }}_\mathrm{q}\) is calculated directly from its definition,

$$\begin{aligned} \frac{\delta {\bar{\mu }}_\mathrm{q}}{\delta \bar{g}_{\mu \nu }}=\frac{1}{2}{\bar{\mu }}_\mathrm{q}\bar{u}^\mu \bar{u}^\nu . \end{aligned}$$
(306)

Variational derivative of the mass density \(\bar{\rho }_\mathrm{q}\) of the dark energy ā€œfluidā€ follows directly from \(\bar{\rho }_\mathrm{q}={\bar{\mu }}_\mathrm{q}\), and reads

$$\begin{aligned} \frac{\delta \bar{\rho }_\mathrm{q}}{\delta \bar{g}_{\mu \nu }}=\frac{1}{2}\bar{\rho }_\mathrm{q}\bar{u}^\mu \bar{u}^\nu . \end{aligned}$$
(307)

Variational derivative of pressure \(\bar{p}_\mathrm{q}\) is obtained from definition (138) along with (306), which yields

$$\begin{aligned} \frac{\delta \bar{p}_\mathrm{q}}{\delta \bar{g}_{\mu \nu }}=\frac{1}{2}\bar{\rho }_\mathrm{q}{\bar{\mu }}_\mathrm{q}\bar{u}^\mu \bar{u}^\nu . \end{aligned}$$
(308)

Variational derivative of energy density \({\bar{\epsilon }}_\mathrm{q}\) is obtained by making use of (306) along with (137). More specifically,

$$\begin{aligned} \frac{\delta {\bar{\epsilon }}_\mathrm{q}}{\delta \bar{g}_{\mu \nu }}=\frac{1}{2}\bar{\rho }_\mathrm{q}{\bar{\mu }}_\mathrm{q}\bar{u}^\mu \bar{u}^\nu . \end{aligned}$$
(309)

Variational derivatives from products and ratios of other quantities are calculated my making use of the chain rule of differentiation and the above equations

$$\begin{aligned} \frac{\delta \left(\bar{\rho }_\mathrm{q}{\bar{\mu }}_\mathrm{q}\right)}{\delta \bar{g}_{\mu \nu }}= & {} \bar{\rho }_\mathrm{q}{\bar{\mu }}_\mathrm{q}\bar{u}^\mu \bar{u}^\nu ,\end{aligned}$$
(310)
$$\begin{aligned} \frac{\delta }{\delta \bar{g}_{\mu \nu }}\left(\frac{\bar{\rho }_\mathrm{q}}{{\bar{\mu }}_\mathrm{q}}\right)= & {} 0,\end{aligned}$$
(311)
$$\begin{aligned} \frac{\delta \left(\bar{p}_\mathrm{q}-{\bar{\epsilon }}_\mathrm{q}\right)}{\delta \bar{g}_{\mu \nu }}= & {} 0. \end{aligned}$$
(312)

1.2.3 Variational Derivatives of Four-Velocity of the Hubble Flow

Variational derivatives from four-velocity of the fluid are derived from the definition (163) of the four-velocity given in terms of the potential \(\bar{\Phi }\) or \({\bar{\Psi }}\) which are independent dynamic variables that do not depend on the metric tensor. Taking variational derivative from (163) and making use either (299) or (306) we obtain

$$\begin{aligned} \frac{\delta \bar{u}_\alpha }{\delta \bar{g}_{\mu \nu }}= & {} -\frac{1}{2}\bar{u}_\alpha \bar{u}^\mu \bar{u}^\nu ,\end{aligned}$$
(313)
$$\begin{aligned} \frac{\delta \bar{u}^\alpha }{\delta \bar{g}_{\mu \nu }}= & {} -\frac{1}{2}\bar{u}^\alpha \bar{u}^\mu \bar{u}^\nu -\bar{g}^{\alpha (\mu }\bar{u}^{\nu )},\end{aligned}$$
(314)
$$\begin{aligned} \frac{\delta \left(\bar{u}^\alpha \phi _\alpha \right)}{\delta \bar{g}_{\mu \nu }}= & {} -\phi ^{(\mu }\bar{u}^{\nu )}-\frac{1}{2}\bar{u}^\mu \bar{u}^\nu \left(\bar{u}^\alpha \phi _\alpha \right), \end{aligned}$$
(315)

where Eq.Ā (315) accounts for the fact that \(\phi _\alpha \) is an independent variable that does not depend on the metric tensor.

1.2.4 Variational Derivatives of the Metric Tensor Perturbations

Variational derivatives from the metric tensor perturbations \(l^{\alpha \beta }\) are determined by taking into account that \(l^{\alpha \beta }=\mathfrak {h}^{\alpha \beta }/\sqrt{\bar{g}}\) and \(\mathfrak {h}^{\alpha \beta }\) is an independent dynamic variable which does not depend on the metric tensor. Therefore, its variational derivative is nil, and we have

$$\begin{aligned} \frac{\delta l^{\alpha \beta }}{\delta \bar{g}_{\mu \nu }}=\frac{\delta }{\delta \bar{g}_{\mu \nu }}\left( \frac{\mathfrak {h}^{\alpha \beta }}{\sqrt{\bar{g}}}\right) =\mathfrak {h}^{\alpha \beta }\frac{\delta }{\delta \bar{g}_{\mu \nu }}\left( \frac{1}{\sqrt{\bar{g}}}\right) =-\frac{1}{2}l^{\alpha \beta }\bar{g}^{\mu \nu }. \end{aligned}$$
(316)

Other variational derivatives are derived by making use of tensor operations of rising and lowering indices with the help of \(\bar{g}_{\alpha \beta }\) and applying from (316). It gives

$$\begin{aligned} \frac{\delta l_{\alpha \beta }}{\delta \bar{g}_{\mu \nu }}= & {} -\frac{1}{2}l_{\alpha \beta }\bar{g}^{\mu \nu }+2l_\alpha {}^{(\mu }\delta ^{\nu )}_\beta ,\end{aligned}$$
(317)
$$\begin{aligned} \frac{\delta l}{\delta \bar{g}_{\mu \nu }}= & {} l^{\mu \nu }-\frac{1}{2}l\bar{g}^{\mu \nu },\end{aligned}$$
(318)
$$\begin{aligned} \frac{\delta \mathfrak {q}}{\delta \bar{g}_{\mu \nu }}= & {} -\mathfrak {q}\left(\bar{u}^\mu \bar{u}^\nu +\frac{1}{2}\bar{g}^{\mu \nu }\right)+\frac{1}{2}\left(l^{\mu \nu }+l\bar{u}^\mu \bar{u}^\nu \right),\end{aligned}$$
(319)
$$\begin{aligned} \frac{\delta }{\delta \bar{g}_{\mu \nu }}\left(l^{\alpha \beta }l_{\alpha \beta }-\frac{l^2}{2}\right)= & {} 2l^{\alpha (\mu }l^{\nu )}{}_\alpha -ll^{\mu \nu }-\bar{g}^{\mu \nu }\left(l^{\alpha \beta }l_{\alpha \beta }-\frac{l^2}{2}\right). \end{aligned}$$
(320)

1.3 Variational Derivatives with Respect to Matter Variables

1.3.1 Variational Derivatives of Dark Matter Variables

The dark matter variables do not depend on the Clebsch potential \(\bar{\Phi }\) directly but merely on its first derivative \(\bar{\Phi }_\alpha \). Therefore, any variational derivative of dark matter variable, say, \(\mathcal{Q}=\mathcal{Q}(\bar{\Phi }_\alpha )\), is reduced to a total divergence

$$\begin{aligned} \frac{\delta \mathcal{Q}}{\delta \bar{\Phi }}=-\frac{\partial }{\partial x^\alpha }\frac{\partial \mathcal{Q}}{\partial \bar{\Phi }_\alpha }. \end{aligned}$$
(321)

We present a short summary of the partial derivatives with respect to \(\bar{\Phi }_\alpha \).

$$\begin{aligned} \frac{\partial {\bar{\mu }}_\mathrm{m}}{\partial \bar{\Phi }_{\alpha }}= & {} \bar{u}^\alpha ,\end{aligned}$$
(322)
$$\begin{aligned} \frac{\partial \bar{p}_\mathrm{m}}{\partial \bar{\Phi }_{\alpha }}= & {} \bar{\rho }_\mathrm{m}\bar{u}^\alpha ,\end{aligned}$$
(323)
$$\begin{aligned} \frac{\partial \bar{\rho }_\mathrm{m}}{\partial \bar{\Phi }_{\alpha }}= & {} \frac{c^2}{c^2_\mathrm{s}}\frac{\bar{\rho }_\mathrm{m}}{{\bar{\mu }}_\mathrm{m}}\bar{u}^\alpha ,\end{aligned}$$
(324)
$$\begin{aligned} \frac{\partial {\bar{\epsilon }}_\mathrm{m}}{\partial \bar{\Phi }_{\alpha }}= & {} \frac{c^2}{c^2_\mathrm{s}}\bar{\rho }_\mathrm{m}\bar{u}^\alpha ,\end{aligned}$$
(325)
$$\begin{aligned} \frac{\partial \left(\bar{\rho }_\mathrm{m}{\bar{\mu }}_\mathrm{m}\right)}{\partial \bar{\Phi }_{\alpha }}= & {} \left(1+\frac{c^2}{c^2_\mathrm{s}}\right)\bar{\rho }_\mathrm{m}\bar{u}^\alpha ,\end{aligned}$$
(326)
$$\begin{aligned} \frac{\partial }{\partial \bar{\Phi }_{\alpha }}\left(\frac{\bar{\rho }_\mathrm{m}}{{\bar{\mu }}_\mathrm{m}}\right)= & {} -\left(1-\frac{c^2}{c^2_\mathrm{s}}\right)\frac{\bar{\rho }_\mathrm{m}}{{\bar{\mu }}_\mathrm{m}^2}\bar{u}^\alpha ,\end{aligned}$$
(327)
$$\begin{aligned} \frac{\partial \left(\bar{p}_\mathrm{m}-{\bar{\epsilon }}_\mathrm{m}\right)}{\partial \bar{\Phi }_{\alpha }}= & {} +\left(1-\frac{c^2}{c^2_\mathrm{s}}\right)\bar{\rho }_\mathrm{m}\bar{u}^\alpha . \end{aligned}$$
(328)

Partial derivatives of four velocity

$$\begin{aligned} \frac{\partial \bar{u}_\alpha }{\partial \bar{\Phi }_{\beta }}=-\frac{\bar{P}_\alpha {}^\beta }{{\bar{\mu }}_\mathrm{m}},\qquad \frac{\partial \bar{u}^\alpha }{\partial \bar{\Phi }_{\beta }}=-\frac{\bar{P}^{\alpha \beta }}{{\bar{\mu }}_\mathrm{m}}. \end{aligned}$$
(329)

It allows us to deduce, for example,

$$\begin{aligned} \frac{\partial \left(\bar{u}^\alpha \phi _\alpha \right)}{\partial \bar{\Phi }_{\beta }}= & {} -\frac{1}{{\bar{\mu }}_\mathrm{m}}\bar{P}^{\alpha \beta }\phi _\beta ,\end{aligned}$$
(330)
$$\begin{aligned} \frac{\partial \mathfrak {q}}{\partial \bar{\Phi }_{\alpha }}= & {} -\frac{2}{{\bar{\mu }}_\mathrm{m}}\bar{P}^\alpha {}_\mu l^{\mu \nu }\bar{u}_\nu . \end{aligned}$$
(331)

1.3.2 Variational Derivatives of Dark Energy Variables

The dark energy variables depend on both the scalar potential \({\bar{\Psi }}\) and its first derivative \({\bar{\Psi }}_\alpha \) in the most generic situation. This is because there is a potential of the scalar field \(W(\bar{\Phi })\) that is absent in case of the dark matter. Therefore, variational derivative of the dark energy variable, say, \(\mathcal{a}=\mathcal{A}({\bar{\Psi }},{\bar{\Psi }}_\alpha )\), is

$$\begin{aligned} \frac{\delta \mathcal{A}}{\delta {\bar{\Psi }}}=\frac{\partial \mathcal{A}}{\partial {\bar{\Psi }}}-\frac{\partial }{\partial x^\alpha }\frac{\partial \mathcal{A}}{\partial {\bar{\Psi }}_\alpha }. \end{aligned}$$
(332)

Partial derivatives \(\partial \mathcal{A}/\partial {\bar{\Psi }}=(\partial \mathcal{A}/\partial W)(\partial W/\partial {\bar{\Psi }}\), and their particular form depends on the shape of the potential W. As for the partial derivatives with respect to the derivatives of the field, they can be calculated explicitly for each variable, and we present a short summary of these partial derivatives below. More specifically,

$$\begin{aligned} \frac{\partial {\bar{\mu }}_\mathrm{q}}{\partial {\bar{\Psi }}_{\alpha }}= & {} \bar{u}^\alpha ,\end{aligned}$$
(333)
$$\begin{aligned} \frac{\partial \bar{p}_\mathrm{q}}{\partial {\bar{\Psi }}_{\alpha }}= & {} \bar{\rho }_\mathrm{q}\bar{u}^\alpha ,\end{aligned}$$
(334)
$$\begin{aligned} \frac{\partial \bar{\rho }_\mathrm{q}}{\partial {\bar{\Psi }}_{\alpha }}= & {} \bar{u}^\alpha ,\end{aligned}$$
(335)
$$\begin{aligned} \frac{\partial {\bar{\epsilon }}_\mathrm{q}}{\partial {\bar{\Psi }}_{\alpha }}= & {} \bar{\rho }_\mathrm{q}\bar{u}^\alpha ,\end{aligned}$$
(336)
$$\begin{aligned} \frac{\partial \left(\bar{\rho }_\mathrm{q}{\bar{\mu }}_\mathrm{q}\right)}{\partial {\bar{\Psi }}_{\alpha }}= & {} 2\bar{\rho }_\mathrm{q}\bar{u}^\alpha ,\end{aligned}$$
(337)
$$\begin{aligned} \frac{\partial }{\partial {\bar{\Psi }}_{\alpha }}\left(\frac{\bar{\rho }_\mathrm{q}}{{\bar{\mu }}_\mathrm{q}}\right)= & {} 0,\end{aligned}$$
(338)
$$\begin{aligned} \frac{\partial \left(\bar{p}_\mathrm{q}-{\bar{\epsilon }}_\mathrm{q}\right)}{\partial {\bar{\Psi }}_{\alpha }}= & {} 0. \end{aligned}$$
(339)

Partial derivatives of four velocity

$$\begin{aligned} \frac{\partial \bar{u}_\alpha }{\partial {\bar{\Psi }}_{\beta }}=-\frac{\bar{P}_\alpha {}^\beta }{{\bar{\mu }}_\mathrm{q}},\qquad \frac{\partial \bar{u}^\alpha }{\partial {\bar{\Psi }}_{\beta }}=-\frac{\bar{P}^{\alpha \beta }}{{\bar{\mu }}_\mathrm{q}}. \end{aligned}$$
(340)

It allows us to deduce, for example,

$$\begin{aligned} \frac{\partial \left(\bar{u}^\alpha \psi _\alpha \right)}{\partial {\bar{\Psi }}_{\beta }}= & {} -\frac{1}{{\bar{\mu }}_\mathrm{q}}\bar{P}^{\alpha \beta }\psi _\beta ,\end{aligned}$$
(341)
$$\begin{aligned} \frac{\partial \mathfrak {q}}{\partial {\bar{\Psi }}_{\alpha }}= & {} -\frac{2}{{\bar{\mu }}_\mathrm{q}}\bar{P}^\alpha {}_\mu l^{\mu \nu }\bar{u}_\nu . \end{aligned}$$
(342)

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kopeikin, S.M., Petrov, A.N. (2015). Equations of Motion in an Expanding Universe. In: Puetzfeld, D., LƤmmerzahl, C., Schutz, B. (eds) Equations of Motion in Relativistic Gravity. Fundamental Theories of Physics, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-319-18335-0_21

Download citation

Publish with us

Policies and ethics