Skip to main content

On Geodesic Dynamics in Deformed Black-Hole Fields

  • Chapter
  • First Online:
Equations of Motion in Relativistic Gravity

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 179))

Abstract

“Almost all” seems to be known about isolated stationary black holes in asymptotically flat space-times and about the behaviour of test matter and fields in their backgrounds. The black holes likely present in galactic nuclei and in some X-ray binaries are commonly being represented by the Kerr metric, but actually they are not isolated (they are detected only thanks to a strong interaction with the surroundings), they are not stationary (black-hole sources are rather strongly variable) and they also probably do not live in an asymptotically flat universe. Such “perturbations” may query the classical black-hole theorems (how robust are the latter against them?) and certainly affect particles and fields around, which can have observational consequences. In the present contribution we examine how the geodesic structure of the static and axially symmetric black-hole space-time responds to the presence of an additional matter in the form of a thin disc or ring. We use several different methods to show that geodesic motion may become chaotic, to reveal the strength and type of this irregularity and its dependence on parameters. The relevance of such an analysis for galactic nuclei is briefly commented on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We also checked that the results are similar for discs of the family with power-law density profile [5] which are however more demanding computationally.

  2. 2.

    The series of just one variable (e.g. position) suffices actually, since the phase space can be reconstructed from a sequence of its time-delayed copies as in the WADV method summarized above.

  3. 3.

    The exponents should reveal the nature of the flow in the vicinity of the reference world-line, hence, while time is running, the separation vector has to be renormalized whenever it reaches a certain “too large” value; the velocity deviation vector, given by difference between four-velocities of the neighbouring world-lines, has to be renormalized by the same factor.

  4. 4.

    These points does not represent true recurrences and are usually discarded from the statistics.

References

  1. O. Semerák, P. Suková, Free motion around black holes with discs or rings: between integrability and chaos—I. Mon. Not. R. Astron. Soc. 404, 545 (2010)

    Article  ADS  Google Scholar 

  2. N.J. Cornish, N.E. Frankel, The black hole and the pea. Phys. Rev. D 56, 1903 (1997)

    Article  ADS  Google Scholar 

  3. M.A. Abramowicz, A. Curir, A. Schwarzenberg-Czerny, R.E. Wilson, Self-gravity and the global structure of accretion discs. Mon. Not. R. Astron. Soc. 208, 279 (1984)

    Article  ADS  Google Scholar 

  4. O. Semerák, Gravitating discs around a Schwarzschild black hole—III. Class. Quantum Gravity 20, 1613 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. O. Semerák, Exact power-law discs around static black holes. Class. Quantum Gravity 21, 2203 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Žáček, O. Semerák, Gravitating discs around a Schwarzschild black hole II. Czech. J. Phys. 52, 19 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. O. Semerák, P. Suková, Free motion around black holes with discs or rings: between integrability and chaos—II. Mon. Not. R. Astron. Soc. 425, 2455 (2012)

    Article  ADS  Google Scholar 

  8. P. Suková, O. Semerák, Free motion around black holes with discs or rings: between integrability and chaos—III. Mon. Not. R. Astron. Soc. 436, 978 (2013)

    Article  ADS  Google Scholar 

  9. J.P.S. Lemos, P.S. Letelier, Exact general relativistic thin disks around black holes. Phys. Rev. D 49, 5135 (1994)

    Article  ADS  Google Scholar 

  10. O. Semerák, T. Zellerin, M. Žáček, The structure of superposed Weyl fields. Mon. Not. R. Astron. Soc. 308, 691 (1999)

    Article  ADS  Google Scholar 

  11. L.A. D’Afonseca, P.S. Letelier, S.R. Oliveira, Geodesics around Weyl-Bach’s ring solution. Class. Quantum Gravity 22, 3803 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. D.T. Kaplan, L. Glass, Direct test for determinism in a time series. Phys. Rev. Lett. 68, 427 (1992)

    Article  ADS  Google Scholar 

  13. J.-P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 4, 973 (1987)

    Article  ADS  Google Scholar 

  14. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. O. Kopáček, V. Karas, J. Kovář, Z. Stuchlík, Transition from regular to chaotic circulation in magnetized coronae near compact objects. Astrophys. J. 722, 1240 (2010)

    Article  ADS  Google Scholar 

  16. J. Kovář, O. Kopáček, V. Karas, Y. Kojima, Regular and chaotic orbits near a massive magnetic dipole. Class. Quantum Gravity 30, 025010 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. X. Wu, T.-Y. Huang, Computation of Lyapunov exponents in general relativity. Phys. Lett. A 313, 77 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. X. Wu, T.-Y. Huang, H. Zhang, Lyapunov indices with two nearby trajectories in a curved spacetime. Phys. Rev. D 74, 083001 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Froeschlé, E. Lega, R. Gonczi, Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  20. W. Han, Chaos and dynamics of spinning particles in Kerr spacetime. Gen. Relativ. Gravit. 40, 1831 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Han, Revised research about chaotic dynamics in Manko, et al., spacetime. Phys. Rev. D 77, 123007 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. P.M. Cincotta, C. Simó, Simple tools to study global dynamics in non-axisymmetric galactic potentials—I. Astron. Astrophys. Suppl. Ser. 147, 205 (2000)

    Article  ADS  Google Scholar 

  23. M.F. Mestre, P.M. Cincotta, C.M. Giordano, Analytical relation between two chaos indicators: FLI and MEGNO. Mon. Not. R. Astron. Soc. 414, L100 (2011)

    Article  ADS  Google Scholar 

  24. G. Lukes-Gerakopoulos, Adjusting chaotic indicators to curved spacetimes. Phys. Rev. D 89, 043002 (2014)

    Article  ADS  Google Scholar 

  25. G. Lukes-Gerakopoulos, T.A. Apostolatos, G. Contopoulos, Observable signature of a background deviating from the Kerr metric. Phys. Rev. D 81, 124005 (2010)

    Article  ADS  Google Scholar 

  26. G. Neugebauer, R. Meinel, Progress in relativistic gravitational theory using the inverse scattering method. J. Math. Phys. 44, 3407 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Klein, O. Richter, Ernst Equation and Riemann Surfaces: Analytical and Numerical Methods. Lecture Notes in Physics, vol. 685 (Springer, Berlin 2005)

    Google Scholar 

  28. J. Lenells, Boundary value problems for the stationary axisymmetric Einstein equations: a disk rotating around a black hole. Commun. Math. Phys. 304, 585 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. V. Belinski, E. Verdaguer, Gravitational Solitons (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  30. A. Tomimatsu, Distorted rotating black holes. Phys. Lett. 103A, 374 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  31. K.D. Krori, R. Bhattacharjee, A Kerr object embedded in a gravitational field. II. J. Math. Phys. 31, 147 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Zellerin, O. Semerák, Two-soliton stationary axisymmetric sprouts from Weyl seeds. Class. Quantum Gravity 17, 5103 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. O. Semerák, Thin disc around a rotating black hole, but with support in-between. Class. Quantum Gravity 19, 3829 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. G.M. de Castro, P.S. Letelier, Black holes surrounded by thin rings and the stability of circular orbits. Class. Quantum Gravity 28, 225020 (2011)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank for support the Czech grants GACR 14-10625S (O.S.) and SVV-267301 (P.S.). O.S. is grateful to Dirk Puetzfeld for invitation to the Bad Honnef conference and to the Wilhelm und Else Heraeus Stiftung for support there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Semerák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Semerák, O., Suková, P. (2015). On Geodesic Dynamics in Deformed Black-Hole Fields. In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds) Equations of Motion in Relativistic Gravity. Fundamental Theories of Physics, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-319-18335-0_17

Download citation

Publish with us

Policies and ethics