Skip to main content

Towards Safe Robotic Surgical Systems

  • Conference paper
  • First Online:
  • 2314 Accesses

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 33))

Abstract

A proof of safety is paramount for an autonomous robotic surgical system to ensure that it does not cause trauma to patients. However, a proof of safety is rarely constructed, as surgical systems are too complex to be dealt with by most formal verification methods. In this paper, we design a controller for motion compensation in beating-heart surgery, and prove that it is safe, i.e., the surgical tool is kept within an allowable distance and orientation of the heart. We solve the problem by simultaneously finding a control law and a barrier function. The motion compensation system is simulated from several initial conditions to demonstrate that the designed control system is safe for every admissible initial condition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aubin, J.P.: Viability Theory. Birkhäuser, Boston (1991)

    MATH  Google Scholar 

  2. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Prentice Hall, New Jersey (2005)

    Google Scholar 

  3. Ding, J., Gillula, J.H., Huang, H., Vitus, M.P., Zhang, W., Tomlin, C.J.: Hybrid systems in robotics. IEEE Robot. Autom. Mag. 18(3), 33–43 (2011). doi:10.1109/MRA.2011.942113

    Article  Google Scholar 

  4. Kerber, F., van der Schaft, A.: Compositional analysis for linear control systems. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 21–30. ACM, New York (2010). doi:10.1145/1755952.1755957

  5. Leveson, N., Turner, C.: An investigation of the Therac-25 accidents. Computer 26(7), 18–41 (1993). doi:10.1109/MC.1993.274940

    Article  Google Scholar 

  6. Madsen, I.H., Tornehave, J.: From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  7. Moustris, G.P., Hiridis, S.C., Deliparaschos, K.M., Konstantinidis, K.M.: Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int. J. Med. Robot. Comput. Assist. Surg. 7(4), 375–392 (2011). doi:10.1002/rcs.408

    Article  Google Scholar 

  8. Muradore, R., Bresolin, D., Geretti, L., Fiorini, P., Villa, T.: Robotic surgery: formal verification of plans. IEEE Robot. Autom. Mag. 18(3), 24–32 (2011). doi:10.1109/MRA.2011.942112

    Article  Google Scholar 

  9. Nakamura, Y., Kishi, K., Kawakami, H.: Heartbeat synchronization for robotic cardiac surgery. IEEE Int. Conf. Robot. Autom. 2, 2014–2019 (2001). doi:10.1109/ROBOT.2001.932903

    Google Scholar 

  10. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1428 (2007). doi:10.1109/TAC.2007.902736

    Article  MathSciNet  Google Scholar 

  11. Richa, R., Bo, A.P.L., Poignet, P.: Towards robust 3d visual tracking for motion compensation in beating heart surgery. Med. Image Anal. 15(3), 302–315 (2011). doi:10.1016/j.media.2010.12.002

    Article  Google Scholar 

  12. Shechter, G., Ozturk, C., Resar, J., McVeigh, E.: Respiratory motion of the heart from free breathing coronary angiograms. IEEE Trans. Med. Imaging 23(8), 1046–1056 (2004). doi:10.1109/TMI.2004.828676

    Article  Google Scholar 

  13. Sloth, C., Pappas, G.J., Wisniewski, R.: Compositional safety analysis using barrier certificates. In: Proceedings of Hybrid Systems: Computation and Control, pp. 15–23 (2012). doi:10.1145/2185632.2185639

  14. Sloth, C., Wisniewski, R., Larsen, J., Leth, J., Poulsen, J.: Model of Beating-Heart and Surgical Robot. Technical report, Aalborg University, Aalborg (2012)

    Google Scholar 

  15. Sontag, E.D.: A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization. Syst. Control Lett. 13(2), 117–123 (1989). doi:10.1016/0167-6911(89)90028-5

    Article  MATH  MathSciNet  Google Scholar 

  16. Sun, L.W., Van Meer, F., Schmid, J., Bailly, Y., Thakre, A.A., Yeung, C.K.: Advanced da Vinci surgical system simulator for surgeon training and operation planning. Int. J. Med. Robot. Comput. Assist. Surg. 3(3), 245–251 (2007). doi:10.1002/rcs.139

    Article  Google Scholar 

  17. Wieland, P., Allgöwer, F.: Constructive safety using control barrier functions. In: Proceedings of the 7th IFAC Symposium on Nonlinear Control Systems, pp. 462–467 (2007). doi:10.3182/20070822-3-ZA-2920.00076

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sloth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sloth, C., Wisniewski, R. (2015). Towards Safe Robotic Surgical Systems. In: Bai, S., Ceccarelli, M. (eds) Recent Advances in Mechanism Design for Robotics. Mechanisms and Machine Science, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-18126-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18126-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18125-7

  • Online ISBN: 978-3-319-18126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics