Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

  • 1767 Accesses

Abstract

Solid adsorbents are promising for applications in post-combustion CO2 capture scenarios. Some adsorbents include zeolites, activated carbon, carbon nanotubes, zeolites, and silicon-based adsorbents. The materials are characterized by their surface functional groups, porosity, surface area, pore size, metal ligands, and electrostatic interactions to determine their potential as adsorbents for CO2. Organic adsorbents are promising for low temperature CO2 adsorption because of their surface properties, such as high surface area, which enables it to be modified by adding additional metals and functional groups. Carbonaceous materials can be physically or chemically activated in order to enhance capture. Biochar, a material known for its benefits to agriculture, can also be used to capture CO2. Modified Organic Frameworks (MOFs) combine metal ions and organic ligands to produce a crystalline porous network that is capable of selectively binding molecules at high capacity. Other solid adsorbents include zeolites, clays, silica-based adsorbents, and metal oxide-based adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bae YS, Hauser BG, Farha OK, Hupp JT, Snurr RQ (2011) Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations. Microporous Mesoporous Mater 141(1–3):231–235

    Article  CAS  Google Scholar 

  • Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943

    Article  CAS  Google Scholar 

  • Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28

    Article  Google Scholar 

  • Bastin L, Barcia PS, Hurtado EJ, Silva JAC, Rodrigues AE, Chen BL (2008) A microporous metal-organic framework for separation of CO2/N-2 and CO2/CH4 by fixed-bed adsorption. J Phys Chem C 112(5):1575–1581

    Article  CAS  Google Scholar 

  • Brasquet C, Rousseau B, Estrade-Szwarckopf H, Le Cloirec P (2000) Observation of activated carbon fibers with SEM and AFM correlation with adsorption data in aqueous solution. Carbon 38(3):407–422

    Article  CAS  Google Scholar 

  • Casco ME, Martinez-Escandell M, Silvestre-Albero J, Rodriguez-Reinoso F (2014) Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67:230–235

    Article  CAS  Google Scholar 

  • Chang YC, Chen DH (2006) Recovery of gold(III) ions by a chitosan-coated magnetic nano-adsorbent. Gold Bull 39(3):98–102

    Article  CAS  Google Scholar 

  • Che SN, Lund K, Tatsumi T, Iijima S, Joo SH, Ryoo R, Terasaki O (2003) Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM): SBA-15 silica and CMK-5 carbon. Angew Chem Int Ed 42(19):2182–2185

    Article  CAS  Google Scholar 

  • Creamer AE, Gao B, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179

    Article  CAS  Google Scholar 

  • D’alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35):6058–6082

    Article  Google Scholar 

  • Dogan AU, Dogan M, Onal M, Sarikaya Y, Aburub A, Wurster DE (2006) Baseline studies of the clay minerals society source clays: specific surface area by the brunauer emmett teller (BET) method. Clays Clay Miner 54(1):62–66

    Article  CAS  Google Scholar 

  • Drage TC, Blackman JM, Pevida C, Snape CE (2009) Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy Fuels 23:2790–2796

    Article  CAS  Google Scholar 

  • Glaser B, Parr M, Braun C, Kopolo G (2009) Biochar is carbon negative. Nat Geosci 2(1):2–2

    Article  CAS  Google Scholar 

  • Goh KH, Lim TT, Dong Z (2008) Application of layered double hydroxides for removal of oxyanions: a review. Water Res 42(6–7):1343–1368

    Article  CAS  Google Scholar 

  • Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi GG, Jones CW (2008) Designing adsorbents for CO(2) capture from flue gas-hyperbranched aminosilicas capable of capturing CO(2) reversibly. J Am Chem Soc 130(10):2902–2903

    Article  CAS  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  • Lee JW, Kidder M, Evans BR, Paik S, Buchanan AC, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974

    Article  CAS  Google Scholar 

  • Li J (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823

    Google Scholar 

  • Li JR, Ma YG, McCarthy MC, Sculley J, Yu JM, Jeong HK, Balbuena PB, Zhou HC (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255(15–16):1791–1823

    Article  CAS  Google Scholar 

  • Li ZS, Cai NS, Huang YY, Han HJ (2005) Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent. Energy Fuels 19(4):1447–1452

    Article  CAS  Google Scholar 

  • Liu J (2012) Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem Soc Rev 41:2308–2322

    Google Scholar 

  • Lowell S, Shields JE (1991) Powder surface area and porosity, 3rd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Lu CY, Bai HL, Wu BL, Su FS, Fen-Hwang J (2008) Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22(5):3050–3056

    Article  CAS  Google Scholar 

  • Lu H, Reddy EP, Smirniotis PG (2006) Calcium oxide based sorbents for capture of carbon dioxide at high temperatures. Ind Eng Chem Res 45(11):3944–3949

    Article  CAS  Google Scholar 

  • Matovic D (2011) Biochar as a viable carbon sequestration option: global and Canadian perspective. Energy 36(4):2011–2016

    Article  CAS  Google Scholar 

  • Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67

    Article  CAS  Google Scholar 

  • Pires J, de Carvalho MB, Carvalho AP, Guil JM, Perdigon-Melon JA (2000) Heats of adsorption of N-hexane by thermal gravimetry with differential scanning calorimetry (TG-DSC): a tool for textural characterization of pillared clays. Clays Clay Miner 48(3):385–391

    Article  CAS  Google Scholar 

  • Reddy MKR, Xu ZP, Lu GQ, da Costa JCD (2006) Layered double hydroxides for CO2 capture: structure evolution and regeneration. Ind Eng Chem Res 45(22):7504–7509

    Article  Google Scholar 

  • Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R (2012) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51(4):1438–1463

    Article  CAS  Google Scholar 

  • Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA (2014) Flexible metal-organic frameworks. Chem Soc Rev 43(16):6062–6096

    Article  CAS  Google Scholar 

  • Sevilla M (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771

    Google Scholar 

  • Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112(2):724–781

    Article  CAS  Google Scholar 

  • Sun YN, Gao B, Yao Y, Fang JN, Zhang M, Zhou YM, Chen H, Yang LY (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578

    Article  CAS  Google Scholar 

  • Tenenbaum DJ (2009) Biochar: carbon mitigation from the ground up. Environ Health Perspect 117(2):A70–A73

    Article  Google Scholar 

  • Yazaydin AO, Snurr RQ, Park TH, Koh K, Liu J, LeVan MD, Benin AI, Jakubczak P, Lanuza M, Galloway DB, Low JJ, Willis RR (2009) Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J Am Chem Soc 131(51):18198

    Google Scholar 

  • Zaman M, Lee JH (2013) Carbon capture from stationary power generation sources: a review of the current status of the technologies. Korean J Chem Eng 30(8):1497–1526

    Article  CAS  Google Scholar 

  • Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P (2008) Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties. Microporous Mesoporous Mater 116(1–3):358–364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Creamer, A.E., Gao, B. (2015). Adsorbents for CO2 Capture. In: Carbon Dioxide Capture: An Effective Way to Combat Global Warming. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-17010-7_3

Download citation

Publish with us

Policies and ethics