Skip to main content

Human Brain Evolution

  • Living reference work entry
  • First Online:
  • 92 Accesses

Definition

There have been significant changes in brain development, anatomy, and molecular biology over the course of human evolution.

Introduction

Modern humans are characterized by remarkable specializations of cognition, including a language that is rich in syntactic complexity and symbolic meaning, a nuanced understanding of the mental states of others, a strong motivation to share in pursuing joint goals, an ability to manufacture sophisticated tools, and an extraordinary capacity for cultural learning. What are the evolutionary changes in brain structure and molecular biology that underlie these cognitive faculties? A comprehensive understanding of human brain evolution requires data from multiple perspectives, incorporating information from fossils, archaeology, comparative neuroanatomy, and genetics.

Evolution of the brain in the human lineage

Compared to other primates and our earliest hominin ancestors, modern humans have very large brains. Weighing approximately 1,400 g on...

This is a preview of subscription content, log in via an institution.

References

  • A de Sousa, & Cunha E. (2012) Hominins and the emergence of the modern human brain. Progress in Brain Research 195, 293–322

    Google Scholar 

  • Balsters, J. H., Cussans, E., Diedrichsen, J., Phillips, K. A., Preuss, T. M., Rilling, J. K., & Ramnani, N. (2010). Evolution of the cerebellar cortex: The selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage, 49, 2045–2052.

    Article  Google Scholar 

  • Balzeau, A., Gilissen, E., & Grimaud-Hervé, D. (2011). Shared pattern of endocranial shape asymmetries among great apes, anatomically modern humans, and fossil hominins. PLoS One, 7, e29581.

    Article  Google Scholar 

  • Barton, R. A., & Venditti, C. (2013). Human frontal lobes are not relatively large. Proceedings of the National Academy of Sciences of the United States of America, 110, 9001–9006.

    Article  Google Scholar 

  • Bianchi, S., Stimpson, C. D., Duka, T., Larsen, M. D., Janssen, W. G., Collins, Z., Bauernfeind, A. L., Schapiro, S. J., Baze, W. B., McArthur, M. J., Hopkins, W. D., Wildman, D. E., Lipovich, L., Kuzawa, C. W., Jacobs, B., Hof, P. R., & Sherwood, C. C. (2013). Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proceedings of the National Academy of Sciences of the United States of America, 110(Supplement 2), 10395–10401.

    Article  Google Scholar 

  • Bruner, E., Manzi, G., & Arsuaga, J. L. (2003). Encephalization and allometric trajectories in the genus Homo: Evidence from the Neandertal and modern lineages. Proceedings of the National Academy of Sciences of the United States of America, 100, 15335–15340.

    Article  Google Scholar 

  • Bruner, E., Preuss, T. M., Chen, X., & Rilling, J. K. (2017). Evidence for expansion of the precuneus in human evolution. Brain Structure & Function, 222(2), 1053–1060.

    Article  Google Scholar 

  • Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences, 17, 648–665.

    Article  Google Scholar 

  • Bufill, E., Agustí, J., & Blesa, R. (2011). Human neoteny revisited: The case of synaptic plasticity. American Journal of Human Biology, 23, 729–739.

    Article  Google Scholar 

  • Cáceres, M., Lachuer, J., Zapala, M. A., Redmond, J. C., Kudo, L., Geschwind, D. H., Lockhart, D. J., Preuss, T. M., & Barlow, C. (2003). Elevated gene expression levels distinguish human from non-human primate brains. Proceedings of the National Academy of Sciences of the United States of America, 100, 13030–13035.

    Article  Google Scholar 

  • Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J. E., Lambert, N., de Marchena, J., Jin, W. L., Vanderhaeghen, P., Ghosh, A., Sassa, T., & Polleux, F. (2012). Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell, 149, 923–935.

    Article  Google Scholar 

  • Donahue, C. J., Glasser, M. F., Preuss, T. M., Rilling, J. K., & Van Essen, D. C. (2018). Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 115, E5183–E5192.

    Article  Google Scholar 

  • Du, A., Zipkin, A. M., Hatala, K. G., Renner, E., Baker, J. L., Bianchi, S., Bernal, K. H., Wood, B. A. (2018). Pattern and process in hominin brain size evolution are scale-dependent. Proceedings of the Biological Sciences, 285(1873). pii: 20172738.

    Article  Google Scholar 

  • Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T., & Pontzer, H. (2012). Metabolic hypothesis for human altriciality. Proceedings of the National Academy of Sciences of the United States of America, 109, 15212–15216.

    Article  Google Scholar 

  • Enard, W. (2011). FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Current Opinion in Neurobiology, 21, 415–424.

    Article  Google Scholar 

  • Enard, W., Khaitovich, P., Klose, J., Zöllner, S., Heissig, F., Giavalisco, P., Nieselt-Struwe, K., Muchmore, E., Varki, A., Ravid, R., Doxiadis, G. M., Bontrop, R. E., & Pääbo, S. (2002). Intra- and interspecific variation in primate gene expression patterns. Science, 296, 340–343.

    Article  Google Scholar 

  • Falk, D. (2012). Hominin paleoneurology: Where are we now? Progress in Brain Research, 195, 255–272.

    Article  Google Scholar 

  • Falk, D., Hildebolt, C., Smith, K., Morwood, M. J., Sutikna, T., Brown, P., Jatmiko, S. E. W., Brunsden, B., & Prior, F. (2005). The brain of LB1, Homo floresiensis. Science, 308, 242–245.

    Article  Google Scholar 

  • Fjell, A. M., Westlye, L. T., Amlien, I., Tamnes, C. K., Grydeland, H., Engvig, A., Espeseth, T., Reinvang, I., Lundervold, A. J., Lundervold, A., & Walhovd, K. B. (2015). High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cerebral Cortex, 25, 26–34.

    Article  Google Scholar 

  • Florio, M., Borrell, V., & Huttner, W. B. (2017). Human-specific genomic signatures of neocortical expansion. Current Opinion in Neurobiology, 42, 33–44.

    Article  Google Scholar 

  • Gabi, M., Neves, K., Masseron, C., Ribeiro, P. F. M., Ventura-Antunes, L., Torres, L., Mota, B., Kaas, J. H., & Herculano-Houzel, S. (2016). No relative expansion of the number of prefrontal neurons in primate and human evolution. Proceedings of the National Academy of Sciences of the United States of America, 113, 9617–9622.

    Article  Google Scholar 

  • Gil-da-Costa, R., Martin, A., Lopes, M. A., Muñoz, M., Fritz, J. B., & Braun, A. R. (2006). Species-specific calls activate homologs of Broca’s and Wernicke’s areas in the macaque. Nature Neuroscience, 9, 1064–1070.

    Article  Google Scholar 

  • Halley, A.C. (2017). Minimal variation in eutherian brain growth rates during fetal neurogenesis. Proceedings of the Biological Sciences, 284(1854). pii: 20170219.

    Article  Google Scholar 

  • Hawkes, K., & Finlay, B. L. (2018). Mammalian brain development and our grandmothering life history. Physiology & Behavior, 193(Pt A), 55–68.

    Article  Google Scholar 

  • Hecht, E. E., Gutman, D. A., Bradley, B. A., Preuss, T. M., & Stout, D. (2015). Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. NeuroImage, 108, 124–137.

    Article  Google Scholar 

  • Holloway, R. L. (2015). Brain evolution. In M. P. Muehlenbein (Ed.), Basics in human evolution (pp. 235–250). New York: Academic Press.

    Chapter  Google Scholar 

  • Holloway, R. L., Hurst, S. D., Garvin, H. M., Schoenemann, P. T., Vanti, W. B., Berger, L. R., & Hawks, J. (2018). Endocast morphology of Homo naledi from the Dinaledi chamber, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 115, 5738–5743.

    Article  Google Scholar 

  • Hopkins, W. D., Misiura, M., Pope, S. M., & Latash, E. M. (2015). Behavioral and brain asymmetries in primates: A preliminary evaluation of two evolutionary hypotheses. Annals of the New York Academy of Sciences, 1359, 65–83.

    Article  Google Scholar 

  • Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.

    Google Scholar 

  • Kuzawa, C. W., Chugani, H. T., Grossman, L. I., Lipovich, L., Muzik, O., Hof, P. R., Wildman, D. E., Sherwood, C. C., Leonard, W. R., & Lange, N. (2014). Metabolic costs and evolutionary implications of human brain development. Proceedings of the National Academy of Sciences of the United States of America, 111, 13010–13015.

    Article  Google Scholar 

  • Mars, R. B., Passingham, R. E., Neubert, F-X., Verhagen, L., Sallet, J. (2017). Evolutionary specializations of human association cortex. Chapter 4.12. In J Kaas, T.M. Preuss (Eds.), Evolution of nervous systems (2nd ed.). Cambridge, MA: Academic Press, pps. 185–205.

    Chapter  Google Scholar 

  • Martin, R. D. (1990). Primate origins and evolution: A phylogenetic reconstruction. Princeton: Princeton University Press.

    Google Scholar 

  • Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J., Fobbs, A. J., Sousa, A. M., Sestan, N., Wildman, D. E., Lipovich, L., Kuzawa, C. W., Hof, P. R., & Sherwood, C. C. (2012). Prolonged myelination in human neocortical evolution. Proceedings of the National Academy of Sciences of the United States of America, 109, 16480–16485.

    Article  Google Scholar 

  • Mortensen, H. S., Pakkenberg, B., Dam, M., Dietz, R., Sonne, C., Mikkelsen, B., & Eriksen, N. (2014). Quantitative relationships in delphinid neocortex. Frontiers in Neuroanatomy, 8, 132.

    Article  Google Scholar 

  • Muntané, G., Horvath, J. E., Hof, P. R., Ely, J. J., Hopkins, W. D., Raghanti, M. A., Lewandowski, A. H., Wray, G. A., & Sherwood, C. C. (2015). Analysis of synaptic gene expression in the neocortex of primates reveals evolutionary changes in glutamatergic neurotransmission. Cerebral Cortex, 25, 1596–1607.

    Article  Google Scholar 

  • Neubauer, S., Hublin, J. J., & Gunz, P. (2018). The evolution of modern human brain shape. Science Advances, 4(1), eaao5961.

    Article  Google Scholar 

  • Orban, G. A., Claeys, K., Nelissen, K., Smans, R., Sunaert, S., Todd, J. T., Wardak, C., Durand, J.-B., & Vanduffel, W. (2006). Mapping the parietal cortex of human and non-human primates. Neuropsychologia, 44, 2647–2667.

    Article  Google Scholar 

  • Petanjek, Z., Judaš, M., Šimic, G., Rasin, M. R., Uylings, H. B., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108, 13281–13286.

    Article  Google Scholar 

  • Preuss, T. M. (2011). The human brain: Rewired and running hot. Annals of the New York Academy of Sciences, 1225(Suppl 1), E182–E191.

    Article  Google Scholar 

  • Raghanti, M. A., Edler, M. K., Stephenson, A. R., Wilson, L. J., Hopkins, W. D., Ely, J. J., Erwin, J. M., Jacobs, B., Hof, P. R., & Sherwood, C. C. (2016). Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: A comparative analysis of the primate basal ganglia. The Journal of Comparative Neurology, 524, 2117–2129.

    Article  Google Scholar 

  • Rilling, J. K. (2014). Comparative primate neuroimaging: Insights into human brain evolution. Trends in Cognitive Sciences, 18, 46–55.

    Article  Google Scholar 

  • Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11, 426–428.

    Article  Google Scholar 

  • Rosenberg, K. R. (1992). The evolution of modern human childbirth. American Journal of Physical Anthropology, 35(S15), 89–124.

    Article  Google Scholar 

  • Sakai, T., Mikami, A., Tomonaga, M., Matsui, M., Suzuki, J., Hamada, Y., Tanaka, M., Miyabe-Nishiwaki, T., Makishima, H., Nakatsukasa, M., & Matsuzawa, T. (2011). Differential prefrontal white matter development in chimpanzees and humans. Current Biology, 21, 1397–1402.

    Article  Google Scholar 

  • Schenker, N. M., Buxhoeveden, D. P., Blackmon, W. L., Amunts, K., Zilles, K., & Semendeferi, K. (2008). A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. The Journal of Comparative Neurology, 510, 117–128.

    Article  Google Scholar 

  • Sherwood, C. C., & Gómez-Robles, A. (2017). Brain plasticity and human evolution. Annual Review of Anthropology, 46, 399–419.

    Article  Google Scholar 

  • Smaers, J. B., Gómez-Robles, A., Parks, A. N., & Sherwood, C. C. (2017). Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Current Biology, 27, 714–720.

    Article  Google Scholar 

  • Somel, M., Liu, X., & Khaitovich, P. (2013). Human brain evolution: Transcripts, metabolites and their regulators. Nature Reviews. Neuroscience, 14, 112–127.

    Article  Google Scholar 

  • Sousa, A. M. M., Zhu, Y., Raghanti, M. A., Kitchen, R. R., Onorati, M., Tebbenkamp, A. T. N., Stutz, B., Meyer, K. A., Li, M., Kawasawa, Y. I., Liu, F., Perez, R. G., Mele, M., Carvalho, T., Skarica, M., Gulden, F. O., Pletikos, M., Shibata, A., Stephenson, A. R., Edler, M. K., Ely, J. J., Elsworth, J. D., Horvath, T. L., Hof, P. R., Hyde, T. M., Kleinman, J. E., Weinberger, D. R., Reimers, M., Lifton, R. P., Mane, S. M., Noonan, J. P., State, M. W., Lein, E. S., Knowles, J. A., Marques-Bonet, T., Sherwood, C. C., Gerstein, M. B., & Sestan, N. (2017). Molecular and cellular reorganization of neural circuits in the human lineage. Science, 358, 1027–1032.

    Article  Google Scholar 

  • Stout, D., & Chaminade, T. (2007). The evolutionary neuroscience of tool making. Neuropsychologia, 45, 1091–1100.

    Article  Google Scholar 

  • Suzuki, I. K., Gacquer, D., Van Heurck, R., Kumar, D., Wojno, M., Bilheu, A., Herpoel, A., Lambert, N., Cheron, J., Polleux, F., Detours, V., & Vanderhaeghen, P. (2018). Human-specific NOTCH2NL genes expand cortical neurogenesis through delta/notch regulation. Cell, 173, 1370–1384.e16.

    Article  Google Scholar 

  • Uddin, M., Wildman, D. E., Liu, G., Xu, W., Johnson, R. M., Hof, P. R., Kapatos, G., Grossman, L. I., & Goodman, M. (2004). Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 101, 2957–2962.

    Article  Google Scholar 

  • Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Thiele, A., Griffiths, T. D., Marslen-Wilson, W. D., & Petkov, C. I. (2015). Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nature Communications, 6, 8901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chet C. Sherwood .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sherwood, C.C. (2019). Human Brain Evolution. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_813-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_813-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16999-6

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics