Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 113))

Abstract

This chapter addresses some of the challenges that arise when solving turbulent flow problems. It is not intended to provide a comprehensive account on turbulence modeling, rather, the intention is simply to introduce the subject and focus on the implementation details of some of the most popular turbulence models. The presentation is limited to incompressible turbulent fluid flow and begins with a general introduction to turbulence modeling. Then the Reynolds stress tensor that originates from the adopted averaging procedure and the Boussinesq hypothesis used in modeling the Reynolds stresses are presented. This is followed by a review of the k − ε and k − ω two-equation models. These are the most popular of the high Reynolds number and low Reynolds number turbulence models, respectively. The BSL and SST models are then introduced, both are derived by combining the k − ε and k − ω models so as to address their respective weaknesses. Finally the treatment of the near wall region is presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge. ISBN 978-0-262-20019-6

    Google Scholar 

  2. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Doklady AN SSSR 30:299–303

    Google Scholar 

  3. Kolmogorov AN (1941) Dissipation of energy in isotropic turbulence. Dokl Akad Nauk SSSR 32:19–21.é

    Google Scholar 

  4. Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys Fluids 11(4):943–945

    Article  MATH  Google Scholar 

  5. Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Ann Rev Fluid Mech. 31:567–603

    Google Scholar 

  6. Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-facing step. J Fluid Mech 330:349–374

    Article  MATH  Google Scholar 

  7. Choi H, Moin P, Kim J (1993) Direct numerical simulation of turbulent flow over Riblets. J Fluid Mech 255:503–539

    Article  MATH  MathSciNet  Google Scholar 

  8. Leonard A (1974) Energy cascade in large-eddy simulations of turbulent fluid flows. Adv Geophys A 18:237–248

    Article  Google Scholar 

  9. Sagaut P (2006) Large eddy simulation for incompressible flows-an introduction. Springer, Berlin

    MATH  Google Scholar 

  10. Ferziger JH (1995) Large eddy simulation. In: Hussaini MY, Gatski T (eds) Simulation and modeling of turbulent flows. Cambridge University Press, New York

    Google Scholar 

  11. Nieuwstadt FTM, Mason PJ, Moeng C-H, Schuman U (1991) Large eddy simulation of the convective boundary layer: a comparison of four computer codes. In: Durst F et al (eds) Turbulent shear flows, 8th edn. Springer, Berlin

    Google Scholar 

  12. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans Royal Soc London A 186:123–164

    Article  MATH  Google Scholar 

  13. Favre A (1965) Equations des Gas Turbulents Compressibles. Journal de Mecanique 4(3):361–390

    Google Scholar 

  14. Boussinesq J (1877) Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Académie des Sciences 23(1):1–680

    Google Scholar 

  15. Schlichting H (1968) Boundary-layer theory, 6th edn. Chapter XIX. McGraw Hill

    Google Scholar 

  16. Schmitt FG (2007) About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique 335(9 and 10):617–627

    Google Scholar 

  17. Prandtl L (1925) Uber die ausgebildete Turbulenz. ZAMM 5:136–139

    MATH  Google Scholar 

  18. Baldwin BS, Lomax H (1978) Thin-Layer approximation and algebraic model for separated turbulent flows. AIAA Paper, Huntsville, pp 78–257

    Google Scholar 

  19. Cebeci T, Smith AMO (1974) Analysis of turbulent boundary layers. Ser Appl Math Mech, vol XV, Academic Press, Waltham

    Google Scholar 

  20. Baldwin BS, Barth TJ (1990) A one-equation turbulence transport model for high reynolds number wall-bounded flows. NASA TM-102847

    Google Scholar 

  21. Goldberg UC (1991) Derivation and testing of a one-equation model based on two time scales. AIAA J 29(8):1337–1340

    Article  Google Scholar 

  22. Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. AIAA Paper, Reno, pp 92–439

    Google Scholar 

  23. Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314

    Article  Google Scholar 

  24. Launder BE, Sharma BI (1974) Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disk. Lett Heat Mass Transfer 1(2):131–138

    Article  Google Scholar 

  25. Chien K-Y (1982) Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model. AIAA J 20(1):33–38

    Article  MATH  MathSciNet  Google Scholar 

  26. Myong HK, Kasagi N (1990) A new approach to the improvement of k-ε turbulence model for wall-bounded shear flows. JSME Int J 33:63–72

    Google Scholar 

  27. Kolmogorov AN (1942) Equations of turbulent motion of an incompressible fluid. Izvestia Acad Sci USSR Phys 6(1 and 2):56–58

    Google Scholar 

  28. Wilcox D (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310

    Article  MATH  MathSciNet  Google Scholar 

  29. Wilcox DC (1998) Turbulence modeling for CFD, 2nd edn. DCW Industries, US

    Google Scholar 

  30. Menter FR (1992) Influence of freestream values on k  ω turbulence model predictions. AIAA J 30(6):1657–1659

    Article  Google Scholar 

  31. Menter FR (1993) Zonal two-equation k − ω turbulence model for aerodynamic flows. AIAA Paper, Orlando, pp 1993–2906

    Google Scholar 

  32. Menter F (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  33. Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model, 4th edn. Turbulence, Heat and Mass Transfer, Antalya, pp 73–86

    Google Scholar 

  34. Menter FR, Carregal Ferreira J, Esch T, Konno B (2003) The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the international gas turbine congress, Tokyo, IGTC2003-TS-059

    Google Scholar 

  35. Menter FR (2009) Review of the shear-stress transport turbulence model experience from an industrial perspective. Int J Comput Fluid Dyn 23(4):305–316

    Article  MATH  Google Scholar 

  36. Daky BJ, Harlow FH (1970) Transport equations in turbulence. Phys Fluids 13:2634–2649

    Article  Google Scholar 

  37. Fu S, Launder BE, Tselepidakis DP (1987) Accommodating the effects of high strain rates in modelling the pressure-strain correlation. Report no. TFD/87/5, Mechanical Engineering Department, Manchester Institute of Science and Technology, England

    Google Scholar 

  38. Gibson MM, Launder BE (1986) Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech 86(Pt. 3):491–511

    Google Scholar 

  39. Gibson MM, Younis BA (1986) Calculation of swirling jets with a reynolds stress closure. Phys Fluids 29:38–48

    Article  Google Scholar 

  40. Wilcox DC, Rubesin MW (1980) Progress in turbulence modeling for complex flow fields including effects of compressibility. NASA TP-1517

    Google Scholar 

  41. Wilcox DC (1988) Multiscale model for turbulent flows. AIAA J 26(11):1311–1320

    Article  MathSciNet  Google Scholar 

  42. Patel VC, Rodi W, Scheuerer G (1985) Turbulence models for near-wall and low reynolds number flows: a review. AIAA J 23(9):1308–1319

    Article  MathSciNet  Google Scholar 

  43. Medic G, Durbin PA (2002) Toward improved prediction of heat transfer on turbine blades. ASME J Turbomach 124(2):187–192

    Article  Google Scholar 

  44. Sahay A, Sreenivasan KR (1999) The wall-normal position in pipe and channel flows at which viscous and turbulent shear stresses are equal. Phys Fluids 11(10):3186–3188

    Article  MATH  Google Scholar 

  45. Bredberg J (2000) On the wall boundary condition for turbulence models. Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Internal report 00/4, Goteborg

    Google Scholar 

  46. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  MATH  Google Scholar 

  47. Grotjans H, Menter F(1998) Wall function for general application cfd codes. In: Computational fluid dynamics 1998, Proceedings fourth European CFD Conference ECCOMAS, Wiley, Chichester

    Google Scholar 

  48. Menter F, Esch T (2001) Elements of industrial heat transfer prediction. In: Proceedings 16th Brazilian congress of mechanical engineering (COBEM), pp 117–127

    Google Scholar 

  49. Kader BA (1981) Temperature and concentration profiles in fully turbulent boundary layers. Int J Heat Mass Transf 24:1541–1544

    Article  Google Scholar 

  50. Tucker PG (2003) Differential equation-based wall distance computation for DES and RANS. J Comput Phys 190:229–248

    Article  MATH  Google Scholar 

  51. Sethian JA (1999) Fast marching methods. SIAM Rev 41(2):199–235

    Article  MATH  MathSciNet  Google Scholar 

  52. Tucker PG, Rumsey CL, Spalart PR, Bartels RE, Biedron RT (2004) Computations of wall distances based on differential equations. AIAA Paper 2004–2232

    Google Scholar 

  53. Xu J-L, Yan C, Fan J-J (2011) Computations of wall distances by solving a transport equation. Appl Math Mech 32(2):141–150

    Article  MathSciNet  Google Scholar 

  54. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org

  55. Hellsten A (1998) Some improvements in menter’s k-omega-SST turbulence model. In: 29th AIAA fluid dynamics conference, AIAA-98-2554

    Google Scholar 

  56. OpenFOAM Doxygen (2015) Version 2.3.x. http://www.openfoam.org/docs/cpp/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Moukalled .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moukalled, F., Mangani, L., Darwish, M. (2016). Turbulence Modeling. In: The Finite Volume Method in Computational Fluid Dynamics. Fluid Mechanics and Its Applications, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-16874-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16874-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16873-9

  • Online ISBN: 978-3-319-16874-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics