Skip to main content

Solving the System of Algebraic Equations

  • Chapter
  • First Online:

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 113))

Abstract

The result of the discretization process is a system of linear equations of the form \( {\mathbf{A}}{\varvec{\upphi}} = {\mathbf{b}} \) where the unknowns \( {\varvec{\upphi}} \), located at the centroids of the mesh elements, are the sought after values. In this system, the coefficients of the unknown variables constituting matrix A are the result of the linearization procedure and the mesh geometry, while vector b contains all sources, constants, boundary conditions, and non-linearizable components. Techniques for solving linear systems of equations are generally grouped into direct and iterative methods, with many sub-groups in each category. Since flow problems are highly non-linear, the coefficients resulting from their linearization process are generally solution dependent. For this reason and since an accurate solution is not needed at each iteration, direct methods have been rarely used in CFD applications. Iterative methods on the other hand have been more popular because they are more suited for this type of applications requiring lower computational cost per iteration and lower memory. The chapter starts by presenting few direct methods applicable to structured and/or unstructured grids (Gauss elimination, LU factorization, Tridiagonal and Pentadiagonal matrix algorithms) to set the ground for discussing the more widely used iterative methods in CFD applications. Then the performance and limitations of some of the basic iterative methods with and without preconditioning are reviewed. This include the Jacobi, Gauss-Siedel, Incomplete LU factorization, and the conjugate gradient methods. This is followed by an introduction to the multigrid method that is generally used in combination with iterative solvers to help addressing some of their important limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Duff I, Erisman A, Reid J (1986) Direct methods for sparse matrices. Clarendon Press, Oxford

    MATH  Google Scholar 

  2. Westlake JR (1968) A handbook of numerical matrix inversion and solution of linear equations. Wiley, New York

    MATH  Google Scholar 

  3. Stoer J, Bulirsch R (1980) Introduction to numerical analysis. Springer, New York

    Book  Google Scholar 

  4. Press WH (2007) Numerical recipes, 3rd edn. The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  5. Thomas LH (1949) Elliptic problems in linear differential equations over a network. Watson Sci. Comput. Lab Report, Columbia University, New York

    Google Scholar 

  6. Conte SD, deBoor C (1972) Elementary numerical analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  7. Pozrikidis C (1998) Numerical computation in science and engineering. Oxford University Press, Oxford

    Google Scholar 

  8. Sebben S, Baliga BR (1995) Some extensions of tridiagonal and pentadiagonal matrix algorithms. Numer Heat Transfer, Part B, 28:323–351

    Google Scholar 

  9. Zhao X-L, Huang T-Z (2008) On the inverse of a general pentadiagonal matrix. Appl Math Comput 202(2):639–646

    Article  MATH  MathSciNet  Google Scholar 

  10. Karawia AA (2010) Two algorithms for solving general backward pentadiagonal linear systems. Int J Comput Math 87(12):2823–2830

    Article  MATH  MathSciNet  Google Scholar 

  11. Hageman L, Young D (1981) Applied iterative methods. Academic Press, New York

    MATH  Google Scholar 

  12. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics

    Google Scholar 

  13. Golub G, Van Loan C (2012) Matrix computations, 4th edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  14. Dongarra J, Van Der Vorst H (1993) Performance of various computers using standard sparse linear equations solving techniques. In: Computer benchmarks. Elsevier Science Publishers BV, New York, pp 177–188

    Google Scholar 

  15. Van Der Vorst H (1981) Iterative solution methods for certain sparse linear systems with a nonsymmetric matrix arising from PDEProblems. J Comput Phys 44:1–19

    Article  MATH  MathSciNet  Google Scholar 

  16. Meijerink J, Van Der Vorst H (1977) An iterative solution method for linear systems of which the coefficient matrix is a symmetric M matrix. Math Comput 31:148–162

    MATH  Google Scholar 

  17. Beauwens R, Quenon L (1976) Existence criteria for partial matrix factorizations in iterative methods. SIAM J Numer Anal 13:615–643

    Article  MATH  MathSciNet  Google Scholar 

  18. Pommerell C (1992) Solution of large unsymmetric systems of linear equations. PhD thesis, Swiss Federal Institute of Technology, Zurich, Switzerland

    Google Scholar 

  19. Van Der Sluis A, Van Der Vorst H (1986) The rate of convergence of conjugate gradients. Numer Math 48(5):543–560

    Article  MATH  MathSciNet  Google Scholar 

  20. Faber V, Manteuffel T (1984) Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J Numer Anal 21:315–339

    Article  MathSciNet  Google Scholar 

  21. Lanczos C (1950) An iteration method for the solution of eigenvalue problem of linear differential and integral operators. J Res Natl Bur Stand 45:255–282 (RP 2133)

    Article  MathSciNet  Google Scholar 

  22. Lanczos C (1952) Solution of systems of linear equations by minimized iterations. J Res Natl Bur Stand 49(1):33–53 (RP 2341)

    Google Scholar 

  23. Fletcher R (1976) Conjugate gradient methods for indefinite systems. In: Watson G (ed) Numerical analysis Dundee 1975. Springer, Berlin, pp 73–89

    Google Scholar 

  24. Sonneveld P (1989) CGS, AFast Lanczostype solver for nonsymmetric linear systems. SIAM J Sci Stat Comput 10:36–52

    Article  MATH  MathSciNet  Google Scholar 

  25. Van Der Vorst H (1992) BiCGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644

    Article  MATH  Google Scholar 

  26. Van Der Vorst H, Vuik C (1991) GMRESR: a family of nested GMRES methods. Technical report 9180, Delft University of Technology, Faculty of Tech. Math, Delft, The Netherlands

    Google Scholar 

  27. Southwell R (1946) Relaxation methods in theoretical physics. Clarendon Press, Oxford

    Google Scholar 

  28. Demmel J, Heath M, Van Der Vorst H (1993) Parallel numerical linear algebra. Acta Numerica 2:111–198

    Google Scholar 

  29. Saad Y, Schultz M (1986) A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  MATH  MathSciNet  Google Scholar 

  30. Fedorenko P (1962) A relaxation method for solving elliptic difference equations. USSR Comput Math Math Phys 1(4):1092–1096

    Article  Google Scholar 

  31. Poussin FV (1968) An accelerated relaxation algorithm for iterative solution of elliptic equations. SIAM J Numer Anal 5:340–351

    Article  MATH  MathSciNet  Google Scholar 

  32. Settari A, Aziz K (1973) A generalization of the additive correction methods for the iterative solution of matrix equations. SIAM J Numer Anal 10(3):506–521

    Article  MATH  MathSciNet  Google Scholar 

  33. Brandt A (1977) Multi-level adaptive solutions to boundary value problems. Math Comput 31(138):333–390

    Article  MATH  Google Scholar 

  34. Briggs WL (1987) A multigrid tutorial. Society of Industrial and Applied Mathematics, Philadelphia, PA

    MATH  Google Scholar 

  35. Shome B (2006) An enhanced additive correction multigrid method. Numer Heat Transfer B 49:395–407

    Google Scholar 

  36. Hutchinson BR, Raithby GD (1986) A multigrid method based on the additive correction strategy. Numer Heat Transfer 9:511–537

    Article  Google Scholar 

  37. Elias SR, Stubley GD, Raithby GD (1997) An adaptive agglomeration method for additive correction multigrid. Int J Numer Meth Eng 40:887–903

    Article  MATH  Google Scholar 

  38. Mavriplis D, Venkatakfrishnan V (1994) Agglomeration multigrid for viscous turbulent flows. AIAA paper 94-2332

    Google Scholar 

  39. Phillips RE, Schmidt FW (1985) A multilevel-multigrid technique for recirculating flows. Numer Heat Transfer 8:573–594

    MATH  Google Scholar 

  40. Lonsdale RD (1991) An algebraic multigrid scheme for solving the Navier-Stokes equations on unstructured meshes. In: Taylor C, Chin JH, Homsy GM (eds) Numerical methods in laminar and turbulent flow, vol 7(2). Pineridge Press, Swansea, pp 1432–1442

    Google Scholar 

  41. Perez E (1985) A 3D finite element multigrid solver for the euler equations. INRIA report 442

    Google Scholar 

  42. Connell SD, Braaten DG (1994) A 3D unstructured adaptive multigrid scheme for the Euler equations. AIAA J 32:1626–1632

    Article  MATH  Google Scholar 

  43. Parthasarathy V, Kallinderis Y (1994) New multigrid approach for three-dimensional unstructured adaptive grids. AIAA J 32:956–963

    Article  MATH  Google Scholar 

  44. Mavriplis DJ (1995) Three-dimensional multigrid reynolds-averaged Navier-Stokes solver for unstructured meshes. AIAA J 33(12):445–453

    Article  MATH  Google Scholar 

  45. Qinghua W, Yogendra J (2006) Algebraic multigrid preconditioned Krylov subspace methods for fluid flow and heat transfer on unstructured meshes. Numer Heat Transfer B 49:197–221

    Article  Google Scholar 

  46. Lallemand M, Steve H, Dervieux A (1992) Unstructured multigridding by volume agglomeration: current status. Comput Fluids 21:397–433

    Article  MATH  Google Scholar 

  47. Mavriplis DJ (1999) Directional agglomeration multigrid techniques for high Reynolds Number viscous flow solvers. AIAA J 37:393–415

    Article  Google Scholar 

  48. Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Academic Press, London

    MATH  Google Scholar 

  49. Phillips RE, Schmidt FW (1985) Multigrid techniques for the solution of the passive scalar advection-diffusion equation. Numer Heat Transfer 8:25–43

    MATH  Google Scholar 

  50. Ruge JW, Stüben K (1987) Algebraic multigrid (AMG). In: McCormick SF (ed) Multigrid methods, frontiers in applied mathematics, vol 3. SIAM, Philadelphia, pp 73–130

    Google Scholar 

  51. OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Moukalled .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moukalled, F., Mangani, L., Darwish, M. (2016). Solving the System of Algebraic Equations. In: The Finite Volume Method in Computational Fluid Dynamics. Fluid Mechanics and Its Applications, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-16874-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16874-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16873-9

  • Online ISBN: 978-3-319-16874-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics