Skip to main content

Collateral Versus Default History

  • Conference paper
Dynamics, Games and Science

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 1))

  • 815 Accesses

Abstract

This paper deals with equilibrium existence for incomplete markets economies with finitely-lived agents and infinitely-lived agents when default is allowed and borrowers have to constitute collateral in terms of durable goods. In the first model, lenders are protected by an exogenous personalized collateral. In the second model, the personalized collateral requirements are endogenously determined by a financial institution whose objective is to minimize the default rate taking into account agent’s default history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araujo, A.P., Monteiro, P.K., Páscoa, M.R.: Infinite horizon incomplete markets with a continuum of states. Math. Financ. 6(2), 119–132 (1996)

    Article  MATH  Google Scholar 

  2. Araujo, A.P., Monteiro, P.K., Páscoa, M.R.: Incomplete markets, continuum of state and default. Econ. Theory 11, 205–213 (1998)

    Article  MATH  Google Scholar 

  3. Araujo, A.P., Páscoa, M.R., Torres-Martínez, J.P.: Collateral avoids Ponzi schemes in incomplete markets. Econometrica 70(4), 1613–1638 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Araujo, A.P., Páscoa, M.R., Torres-Martínez, J.P.: Long-lived collateralized assets and bubbles. Working Paper, University of Chile, SDT 284 (2008)

    Google Scholar 

  5. Braido, L.H.: Trading constraints penalizing default: a recursive approach. J. Math. Econ. 44(2), 157–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bewley, T.: Existence of equilibria in economies with infinitely many commodities. J. Econ. Theory 4, 514–540 (1972)

    Article  MathSciNet  Google Scholar 

  7. Dubey, P., Geanakoplos, J., Shubik, M.: Default and punishment in general equilibrium. Econometrica 73, 1–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Florenzano, M., Gourdel, P.: Incomplete markets in infinite horizon: debt constraints versus nodes prices. Math. Finan. 6(2), 167–196 (1996)

    Article  MATH  Google Scholar 

  9. Florenzano, M., Gourdel, P., Páscoa, M.: Overlapping generations model with incomplete markets. J. Math. Econ. 18, 357–376 (2001)

    Google Scholar 

  10. Gale, D., Mas-Colell, A.: An equilibrium existence theorem for a general model without ordered preferences. J. Math. Econ. 2, 9–15 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gale, D., Mas-Colell, A.: Corrections to an equilibrium existence theorem for a general model without ordered preferences. J. Math. Econ. 6, 297–298 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Geanakoplos, J., Zame, W.R.: Collateral and the enforcement of intertemporal contracts. Working Paper, Yale University (2002)

    Google Scholar 

  13. Hart, O.: On the optimality of equilibrium when the market structure is incomplete. J. Econ. Theory 11, 418–443 (1975)

    Article  MATH  Google Scholar 

  14. Hernandez, A., Santos, M.: Competitive equilibria for infinite horizon economies with incomplete markets. J. Econ. Theory 71, 102–130 (1996)

    Article  MATH  Google Scholar 

  15. Levine, D.K., Zame, W.: Debt Constraints and equilibrium in infinite horizon economies with incomplete markets. J. Math. Econ. 26, 103–131 (1996)

    Article  MATH  Google Scholar 

  16. Magill, M., Quinzii, M.: Infinite horizon incomplete markets. Econometrica 62(4), 853–880 (1994)

    Article  MATH  Google Scholar 

  17. Magill, M., Quinzii, M.: Incomplete markets over an infinite horizon: long-lived securities and speculative bubbles. J. Math. Econ. 26, 133–170 (1996)

    Article  MATH  Google Scholar 

  18. Muller, W.J., Woodford, M.: Determinacy of equilibrium in stationary economies with both finite and infinite lived consumers. J. Econ. Theory 46, 255–290 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Páscoa, M.R., Seghir, A.: Harsh default penalties lead to Ponzi schemes. Games Econ. Behav. 65, 270–286 (2009)

    Article  MATH  Google Scholar 

  20. Sabarwal, T.: Competitive equilibria with incomplete markets and endogenous bankruptcy. The B.E. J. Econ. Theory 3(1), 1–42. De Gruyter (2003)

    Google Scholar 

  21. Samuelson, P.A.: An exact consumption-loan model of interest with or without the social contrivance of money. J. Polit. Econ. 66, 467–482 (1958)

    Article  Google Scholar 

  22. Santos, M., Woodford, M.: Rational asset pricing bubbles. Econometrica 65, 19–57 (1995)

    Article  Google Scholar 

  23. Schmachtenberg, R.: Stochastic overlapping generations model with incomplete markets 1: existence of equilibria. Discussion Paper No. 363–88, Department of Economics, University of Mannheim (1988)

    Google Scholar 

  24. Seghir, A.: An overlapping generations model with non-ordered preferences and numeraire incomplete markets. Decisions Econ. Finan. 28(2), 95–111 (2006)

    Article  MathSciNet  Google Scholar 

  25. Seghir, A., Torres-Martinez, J.P.: Wealth transfers and the role of collateral when lifetimes are uncertain. Econ. Theory 36(3), 471–502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thompson, E.A.: Debt instruments in both macroeconomics theory and capital theory. Am. Econ. Rev. 57, 1196–1210 (1967)

    Google Scholar 

  27. Wilson, C.: Equilibrium in dynamic models with an infinity of agents. J. Econ. Theory 24, 95–111 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

M. Faias would like to thank the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through PEst-OE/MAT/UI0297/2014 (CMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Faias .

Editor information

Editors and Affiliations

Appendices

Appendix

Proof of Proposition 1

The proof of this proposition is close to the proof of Araujo–Páscoa–Torres-Martínez [3]. However, because in our model the number of alive agents depend on the nodes, the uniform bound on the debt values in the former paper no longer holds. However, we obtain bounds on the short sales using similar tricks. Since the stochastic structure of our model is characterized by a finite number of immediate successors at each node, these bounds rule out the possibility of Ponzi games. Moreover, the presence of finitely-lived agents in our model leads to a new technical difficulty, namely that the interior of the budget sets of these agents could be empty, and therefore the budget correspondences may fail to be lower semicontinuous. To overcome this problem, one can define modified budget correspondences that are lower semicontinuous, and applying the Gale and Mas-Colell fixed point theorem [10, 11], we guarantee that each truncated economy has an equilibrium. These modified correspondences are close to the correspondences defined below (in the following proof of Proposition 2) but obviously they do not depend on the collateral since the personalized collateral are exogenous in our first model.

Proof of Proposition 2

3.1 Equilibria in the Truncated Economies

Let \({\mathcal{E}^{\prime}}^{T}\) be the truncated economy associated with the original economy \(\mathcal{E}^{{\prime}},\) which has the same characteristics than \(\mathcal{E}^{{\prime}},\) but where we suppose that agents are constrained to stop their exchange of goods at period T and their exchange of assets at period T − 1. Formally, for each T > 0, let us define the following sets:

$$\displaystyle{\pi ^{T-1}\,:=\,\left \{(p,q) \in \mathbb{R}_{ +}^{D^{T}\times G }\times \prod \limits _{\xi \in D^{T}}\mathbb{R}^{J(\xi )}\left \vert \begin{array}{rl} & \forall \xi \,:\,\ t(\xi ) < T,\ \Vert p(\xi )\Vert _{1}\,+\,\Vert q(\xi )\Vert _{1} = 1, \\ &\forall \xi \,:\,\ t(\xi ) = T,\ \Vert p(\xi )\Vert _{1} = 1.\\ \end{array} \right \},\right.}$$

Let us recall that for each node ξ ∈ D T, for each asset j ∈ J(ξ −), one has \(R^{j}(\xi )\leqslant \Vert A^{j}(\xi )\Vert _{1}.\) Let us denote by:

$$\displaystyle{R^{T}\,:=\,\{R=(R^{j}(\xi ),\ \xi \in D^{T},\ j \in (\xi ^{-}))\mid \forall \xi \in D^{T},\ \forall j \in \left.\left (\xi ^{-}\right )\right )\},\ R^{j}(\xi )\,\leqslant \,\Vert A^{j}(\xi )\left.\Vert _{ 1}\right \}.}$$

Moreover, let us denote by \(\mathcal{M}:=\{\alpha \in \mathbb{R}_{+}^{G}\mid \beta \leqslant \alpha \leqslant W\}.\)

For each h ∈ H, 

$$\displaystyle\begin{array}{rcl} & X^{hT}:=\{ (x^{h}(\xi ),\ \xi \in D) \in X^{h}\mid \forall \xi: t(\xi ) > T,\ x^{h}(\xi ) = 0\},& {}\\ & Z^{hT}:=\{ (z^{h}(\xi ),\ \xi \in D) \in X^{h}\mid \forall \xi: t(\xi )\geqslant T,\ z^{h}(\xi ) = 0\}, & {}\\ & \mbox{ and}\ \forall \xi: t(\xi ) = T,\ \forall j \in J(\xi ),\ M_{j}^{h}(\xi ) = 0. & {}\\ \end{array}$$

Moreover, the budget set of an agent h ∈ H for the truncated economy can be defined as follows:

$$\displaystyle{ B^{hT}(p,q,R,M^{h}) = \left \{(x,\theta,\phi,\varDelta )\left \vert \begin{array}{rl} &p(\xi ^{h})x^{h}(\xi ^{h}) + p(\xi ^{h})M^{h}(\xi ^{h})\phi ^{h}(\xi ^{h}) + q(\xi ^{h})z^{h}(\xi ^{h}) \\ &\leqslant p(\xi ^{h})\omega ^{h}(\xi ^{h}),\ \xi ^{h} \in D^{T-1}, \\ &p(\xi ) \cdot (x^{h}(\xi ) -\omega ^{h}(\xi )) + p(\xi )M^{h}(\xi )\phi ^{h}(\xi ) + q(\xi ) \cdot z^{h}(\xi ) \\ & +\sum \limits _{j\in J(\xi ^{-})}\varDelta _{j}^{h}(\xi )\leqslant p(\xi )[Y (\xi )x^{h}(\xi ^{-}) + Y (\xi )M^{h}(\xi ^{-})\phi ^{h}(\xi ^{-})]+ \\ &\sum \limits _{j\in J(\xi ^{-})}R^{j}(\xi )\theta _{j}^{h}(\xi ^{-}),\ \forall \xi \in (D^{h} -\delta D^{h}) \cap D^{T-1},\ \xi \neq \xi ^{h}, \\ &p(\xi ) \cdot (x^{h}(\xi ) -\omega ^{h}(\xi )) +\sum \limits _{j\in J(\xi ^{-})}\varDelta _{j}^{h}(\xi )\leqslant \\ &p(\xi )[Y (\xi )x^{h}(\xi ^{-}) + Y (\xi )M^{h}(\xi ^{-})\phi ^{h}(\xi ^{-})]+ \\ &\sum \limits _{j\in J(\xi ^{-})}R^{j}(\xi )\theta _{j}^{h}(\xi ^{-}),\forall \xi \in \delta D^{h} \cup D^{T},\ \xi \neq \xi ^{h}, \end{array} \right \}\right. }$$

Moreover, for each agent h ∈ H, the utility function U hT for each truncated economy \({\mathcal{E}^{\prime}}^{T}\) is defined as follows:

$$\displaystyle{ U^{hT}(x^{h},\theta ^{h},\phi ^{h},\varDelta ^{h}):=\sum \limits _{\xi \in D^{T}}v_{\xi }^{h}(\tilde{x}^{h}(\xi )). }$$
(15)

Lemma 1

Under the assumptions stated above, an allocation (x,θ,ϕ,D) which satisfies the conditions (ii), (iii), (iv) and (v) of Definition  4 is bounded.

Proof of Lemma  1 Let (x, θ, ϕ, Δ) be an allocation which satisfies the conditions (ii), (iii), (iv) and (v) of Definition 4. The bounds on x, θ and ϕ are obtained as in Araujo–Páscoa–Torres-Martínez [3]. More precisely, it follows from (ii) that:

$$\displaystyle{ \sum \limits _{(h,g)\in H(0)\times G}[x^{h}(0,g) +\sum \limits _{ j\in J(0)}M_{j}^{h}(0)\phi _{ j}^{h}(0)] =\sum \limits _{ (h,g)\in H\times G}\omega ^{h}(0,g)\leqslant WH(0). }$$
(16)

Let \(\overline{Y }:=\max \limits \{ (Y (\xi ))_{g,g^{{\prime}}},(\xi,g,g^{{\prime}}) \in \times D^{T} \times G \times G\}.\) Then, ∀ξ ∈ D T ∖{0}, one has:

$$\displaystyle{ \begin{array}{ccc} \sum \limits _{(h,g)\in H(\xi )\times G}[x^{h}(\xi,g) +\sum \limits _{j\in J(\xi )}M_{jg}^{h}(\xi )\phi _{j}^{h}(\xi )]\leqslant && \\ WH(\xi ) + \overline{Y }G +\sum \limits _{(h,g)\in H(\xi )\times G}[x^{h}(\xi ^{-},g) +\sum \limits _{j\in J(\xi ^{-})}M_{jg}^{h}(\xi ^{-})\phi _{j}^{h}(\xi ^{-})]. \end{array} }$$
(17)

It then follows from Eqs. (16) and (17) that for each node ξ ∈ D T:  t(ξ) = t that:

$$\displaystyle{ \sum \limits _{(h,g)\in H(\xi )\times G}[\overline{x}^{h}(\xi,g) +\sum \limits _{ j\in J(\xi )}M_{jg}^{h}(\xi )\overline{\phi }_{ j}^{h}(\xi )]\leqslant WH(\xi )\sum \limits _{ n=0}^{t}(\overline{Y }G)^{n}. }$$
(18)

By definition of the personalized collateral, one has that \(m^{h}(\xi ) =\min \limits _{j\in J(\xi )}\Vert M_{j}^{h}(\xi )\Vert _{1} > 0,\) and hence ∀h ∈ H one gets:

$$\displaystyle{ x^{h}(\xi,g)\leqslant WH(0)\sum \limits _{ n=0}^{t}(\overline{Y }G)^{n}:=\chi (\xi ) < +\infty, }$$
(19)
$$\displaystyle{ \phi _{j}^{h}(\xi )\leqslant \frac{\chi (\xi )} {m^{h}(\xi )}:= \alpha ^{h}(\xi ) < +\infty,\ \forall j \in J(\xi ), }$$
(20)
$$\displaystyle{ \theta _{j}^{h}(\xi )\leqslant \alpha ^{h}(\xi ) < +\infty,\ \forall j \in J(\xi ), }$$
(21)

On the other hand, since \(\forall j \in J(\xi ),\ \varDelta _{j}^{h}(\xi )\leqslant p(\xi )A^{j}(\xi )\phi _{j}^{h}(\xi ^{-})\) and in view of our normalization, one gets:

$$\displaystyle{ \varDelta _{j}^{h}(\xi )\leqslant \Vert A^{j}(\xi )\Vert _{ 1}\alpha ^{h}(\xi ^{-}):= \gamma ^{h}(\xi ) < +\infty. }$$
(22)

We will denote by \(\alpha (\xi ):=\sup \limits _{h\in H(\xi )}\alpha ^{h}(\xi )\) and by \(\gamma (\xi ):=\sup \limits _{h\in H(\xi )}\gamma ^{h}(\xi ).\)

For each h ∈ H, let us define:

$$\displaystyle{B^{hT}(p,q,R,M^{h},\chi,\alpha,\gamma ) = \left \{(x,\theta,\phi,\varDelta ) \in B^{hT}(p,q,R,M^{h})\left \vert \begin{array}{rl} &x^{h}(\xi,g)\leqslant 2\chi, \\ &\theta _{j}^{h}(\xi )\leqslant 2\alpha (\xi ), \\ &\phi _{j}^{h}(\xi )\leqslant 2\alpha (\xi ), \\ &\varDelta _{j}^{h}(\xi )\leqslant 2\gamma (\xi ), \end{array} \right \}\right.}$$

Let \({\mathcal{E}^{\prime}}^{T}(\chi,\alpha,\gamma )\) be an economy with the same characteristics as \({\mathcal{E}^{\prime}}^{T}\) but in which the budget constraints are defined by the set B hT(p, q, R, M h, χ, α, γ). 

Lemma 2

The truncated and compactified economy \({\mathcal{E}^{\prime}}^{T}(\chi,\alpha,\gamma )\) has an equilibrium \((\overline{p}^{T},\overline{q}^{T},\overline{R}^{T},(\overline{x}^{hT},\overline{\theta }^{hT},\overline{\phi }^{hT},\overline{\varDelta }^{hT})_{h\in H})\) such that \(\forall h \in H,\ \forall \xi \in D^{T-1},\ \forall j \in J(\xi ^{-}),\) one has \(\overline{M}_{j}^{hT}(\xi ):= F_{\xi,j}^{h}(\overline{p}^{T}(\xi ),\overline{q}^{T}(\xi ),\overline{\kappa }_{\xi }^{hT}).\)

Proof of Lemma  2 The first new technical difficulty in our model in comparison with Araujo–Páscoa–Torres-Martínez [3] is that the budget set correspondences of the finitely-lived agents may not be lower semicontinuous (since their interior can be an empty set). Let us consider an agent h ∈ H and define the set B ′ hT(p, q, R, M h, χ, α, γ) by replacing all the inequalities in B hT(p, q, R, M h, χ, α, γ) by strict inequalities. Moreover, let us define the correspondence

$$\displaystyle{B''^{hT}(p,q,R,M^{h},\chi,\alpha,\gamma ) = \left \{\begin{array}{rl} \{(\omega ^{h},0,0,0)\}&\mbox{ if}\ {B^{\prime}}^{hT}(p,q,R,M^{h},\chi,\alpha,\gamma ) =\emptyset \\ B^{hT}(p,q,R,\chi,\alpha,\gamma )&\mbox{ if}\ {B^{\prime}}^{hT}(p,q,R,M^{h},\chi,\alpha,\gamma )\neq \emptyset \end{array}.\right.}$$

Remark 2

\(\forall h \in H,\ \forall (p,q) \in \pi ^{T},\ \forall R \in \mathbb{R}^{T},\ \forall M^{h} \in \mathcal{M},\ B''^{hT}(p,q,R,M^{h})\neq \emptyset\) since it always contains (ω i, 0). 

Moreover, one can easily prove that B″hT is lower semicontinuous. To simplify the notations, we define v: = (p, q, R, M), and w: = (x, θ, ϕ, Δ). 

For each agent h ∈ H, let us define the following correspondence:

$$\displaystyle{\varPsi ^{hT}(v,w) = \left \{\begin{array}{rl} B^{hT}(v,\chi,\alpha,\gamma )&\mbox{ if}\ w\notin B^{hT}(v,\chi,\alpha,\gamma ) \\ {B^{\prime}}^{hT}(v,\chi,\alpha,\gamma ) \cap P^{h}(w)&\mbox{ if}\ w \in B^{hT}(v,\chi,\alpha,\gamma ) \end{array},\right.}$$

We also define the correspondence:

$$\displaystyle{\varPsi ^{0T}(v,w) = \left \{(p^{{\prime}},q^{{\prime}}) \in \pi ^{T}\left \vert \begin{array}{rl} &\forall \xi \in D^{T}, \\ &(p^{{\prime}}(\xi ) - p(\xi )) \cdot \sum \limits _{h\in H}[x^{h}(\xi ) + M^{h}(\xi )\phi ^{h}(\xi ) + Y (\xi )x^{h}(\xi ^{-}) \\ & - Y (\xi )M^{h}(\xi ^{-})\phi ^{h}(\xi ^{-}) -\omega ^{h}(\xi )] + (q^{{\prime}}(\xi ) - q(\xi )) \cdot \sum \limits _{h\in H}z^{h}(\xi ) > 0. \end{array} \right \}\right.}$$

where P h(w): = { w ′∣U h(w ′) > U h(w)}. 

Moreover, we add the following players to this generalized game:

  • Given an allocation (x, θ, ϕ, Δ), at each node ξ ∈ D T−1, for each asset j ∈ J(ξ), a financial institution chooses M j h(ξ) in order to solve the following problem:

    $$\displaystyle{\min \limits _{M_{j}^{h}(\xi )\in \mathcal{M}}[M_{j}^{h}(\xi ) - F_{\xi,j}^{h}(p(\xi ),q(\xi ),\kappa _{\xi }^{h})]^{2},}$$
  • Given an allocation (x, θ, ϕ, Δ), at each node ξ ∈ D T ∖{0}, for each j ∈ J(ξ −), an auctioneer chooses \(R^{j}(\xi )\leqslant \Vert A^{j}(\xi )\Vert _{1}\) in order to maximize:

    $$\displaystyle{[R^{j}(\xi )\sum \limits _{ h\in H}\theta ^{h}(\xi ^{-}) -\sum \limits _{ h\in H}D_{j}^{h}(\xi )]^{2}.}$$

Since, \(\forall h \in H \cup \{ 0\},\ \varPsi ^{hT}\) is lower semicontinuous and by definition of Ψ hT,  w ∉ Ψ hT(v, w), it follows from the Gale and Mas-Colell fixed point theorem [10, 11] that there exists \((\overline{p}^{T},\overline{q}^{T},\overline{R}^{T},(\overline{M}^{hT})_{h\in H}(\overline{x}^{hT},\overline{\theta }^{hT},\overline{\phi }^{hT},\overline{\varDelta }^{hT})_{h\in H}):= (\overline{v},\overline{w})\) such that:

$$\displaystyle{\forall h \in H \cup \{ 0\},\ \varPsi ^{hT}(\overline{v},\overline{w}) =\emptyset.}$$

That is, \(\forall h \in H,\ {B^{\prime}}^{hT}(v,\chi,\alpha,\gamma ) \cap P^{h}(w) =\emptyset\) and

$$\displaystyle{ \begin{array}{ccc} & (p(\xi ) -\overline{p}^{T}(\xi )) \cdot \sum \limits _{h\in H}[\overline{x}^{iT}(\xi ) + M^{h}(\xi )\overline{\phi }^{hT}(\xi ) - Y (\xi )\overline{x}^{hT}(\xi ^{-}) \\ & - Y (\xi )M^{h}(\xi ^{-})\overline{\phi }^{hT}(\xi ^{-}) -\omega ^{h}(\xi )] + (q(\xi ) -\overline{q}^{T}(\xi )) \cdot \sum \limits _{h\in H}\overline{z}^{hT}(\xi )\leqslant 0, \end{array} }$$
(23)

On the other hand, the game played by the financial institution and the auctioneers yield to M j h(ξ) = F ξ, j h(p(ξ), q(ξ), κ ξ h) and \(R^{j}(\xi )\sum \limits _{h\in H}\theta _{j}^{h}(\xi ^{-}) =\sum \limits _{h\in H}D_{j}^{h}(\xi ).\) The feasibility conditions can be easily obtained using Eq. (23). □ 

Lemma 3

The truncated economy \({\mathcal{E}^{\prime}}^{T}\) has an equilibrium \((\overline{p}^{T},\overline{q}^{T},\overline{R}^{T},(\overline{M}^{hT})_{h\in H},(\overline{x}^{hT},\overline{\theta }^{hT},\overline{\phi }^{hT},\overline{\varDelta }^{hT})_{h\in H}).\)

Proof of Lemma  3 We have already proved that \(\forall h \in H,\ {B^{\prime}}^{hT}(v,\chi,\alpha,\gamma ) \cap P^{h}(w) =\emptyset.\) It then remains to prove that \(\forall h \in H,\ B^{hT}(v,\chi,\alpha,\gamma ) \cap P^{h}(w) =\emptyset.\) This follows from a classical convexity argument. □ 

Asymptotic Results The techniques used in Araujo–Páscoa–Torres-Martínez [3] can be easily adapted to the case of incomplete participation and personalized collateral to show that the cluster point is an equilibrium of the original economy.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Faias, M., Seghir, A. (2015). Collateral Versus Default History. In: Bourguignon, JP., Jeltsch, R., Pinto, A., Viana, M. (eds) Dynamics, Games and Science. CIM Series in Mathematical Sciences, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16118-1_14

Download citation

Publish with us

Policies and ethics