Skip to main content

On the Microstructural Modeling of Vascular Tissues

  • Conference paper
  • First Online:
Computational and Experimental Biomedical Sciences: Methods and Applications

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 21))

Abstract

Accurate determination of the biomechanical implications of vascular surgeries or pathologies on patients requires developing patient-specific models of the organ or vessel under consideration. In this regard, combining the development of advanced constitutive laws that mimic the behaviour of the vascular tissue with advanced computer analysis provides a powerful tool for modelling vascular tissues on a patient-specific basis. Collagen is the most abundant protein in mammals and provides soft biological tissue, like the vasculature, with mechanical strength, stiffness and toughness. In several tissues there is a strong alignment of the collagen fibres with little dispersion in their orientation, but in other cases, such as the artery wall, there is significant dispersion in the orientation, which has a significant influence on the mechanical response. Proposed structure-based models was used by taking into account the spatial dispersion or waviness of collagen fiber directions. Vascular tissues exhibits simultaneously elastic and viscous material response. The rate-dependent material behavior of this kind of materials has been well-documented and quantified in the literature. Furthermore, non-physiological loads drive soft tissue to damage that may induce a strong reduction of the stiffness. In this chapter, we have provided a critical review of the fundamental aspects in modeling this kind of the materials. The application of these constitutive relationships in the context of vascular system has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that \( x \) is a dummy variable used for integration purposes.

References

  1. V. Alastrué, M. A. Martinez, A. Menzel, and M. Doblare. On the use of non-linear transformations for the evaluation of anisotropic rotationally symmetric directional integrals. application to the stress analysis in fibred soft tissues. Int J Numer Meth Biom Eng, 79:474–504, 2009.

    Google Scholar 

  2. V. Alastrué, M. A. Martínez, M. Doblaré, and A. Menzel. Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. J Mech Phys Solids, 57:178–203, 2009.

    Google Scholar 

  3. V. Alastrué, E. Peña, M. A. Martínez, and M. Doblaré. Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue. J Biomech, 41:3038–3045, 2008.

    Google Scholar 

  4. V. Alastrué, J. F. Rodríguez, B. Calvo, and M. Doblaré. Structural damage models for fibrous biological soft tissues. Int J Solids Struc, 44:5894–5911, 2007.

    Google Scholar 

  5. V. Alastrué, P. Saez, M. A. Martínez, and M. Doblaré. On the use of bingham statistical distribution in microsphere-based constitutive models fo arterial tissue. Mech Res Commun, 37:700–706, 2010.

    Google Scholar 

  6. E. M. Arruda and M. C. Boyce. A three-Ddimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids, 41:389–412, 1993.

    Google Scholar 

  7. C. Bingham. An antipodally summetric distribution on the sphere. Ann Stat, 2:1201–1225, 1974.

    Google Scholar 

  8. J. Bonet and R. D. Wood. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  9. B. Calvo, E. Peña, P. Martins, T. Mascarenhas, M. Doblare, R. Natal, and A. Ferreira. On modelling damage process in vaginal tissue. J Biomech, 42:642–651, 2009.

    Google Scholar 

  10. B. Calvo, E. Peña, M. A. Martínez, and M. Doblaré. An uncoupled directional damage model for fibered biological soft tissues. Formulation and computational aspects. Int J Numer Meth Engng, 69:2036–2057, 2007.

    Google Scholar 

  11. P. B. Canham, H. M. Finlay, and D. R. Boughner. Contrasting structure of the saphenous vein and internal mammary artery used as coronary bypass vessels. Cardiovasc Res, 34:557–567, 1997.

    Google Scholar 

  12. P. B. Canham, H. M. Finlay, J. G. Dixon, D. R. Boughner, and A. Chen. Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure. Cardiovasc Res, 23:973–982, 1989.

    Google Scholar 

  13. H. Demiray, H. W. Weizsacker, K. Pascale, and H. Erbay. A stress-strain relation for a rat abdominal aorta. J Biomech, 21:369–374, 1988.

    Google Scholar 

  14. K.P. Dingemans, P. Teeling, J. H. Lagendijk, and A. E. Becker. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec, 258:1–14, 2000.

    Google Scholar 

  15. H. M. Finlay, L. McCullough, and P. B. Canham. Three-dimensional collagen organization of human brain arteries at different transmural pressures. J Vasc Res, 32:301–312, 1995.

    Google Scholar 

  16. P. J. Flory. Thermodynamic relations for high elastic materials. Trans Faraday Soc, 57:829–838, 1961.

    Google Scholar 

  17. Y. C. Fung, K. Fronek, and P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol, 237:H620–H631, 1979.

    Google Scholar 

  18. A. García. Experimental and numerical framework for modelling vascular diseases and medical devices. PhD thesis, University of Zaragoza, Spain, Division of Solids and Structural Mechanics, 2012.

    Google Scholar 

  19. A. García, M. A. Martínez, and E. Peña. Determination and Modeling of the Inelasticity Over the Length of the Porcine Carotid Artery. ASME J Biomech Eng, 135:031004–1, 2013.

    Google Scholar 

  20. A. García, E. Peña, A. Laborda, F. Lostalé, M. A. De Gregorio, M. Doblaré, and M. A. Martínez. Experimental study and constitutive modelling of the passive mechanical properties of the porcine carotid artery and its relation to histological analysis. Implications in animal cardiovascular device trials. Med Eng Phys, 33:665–676, 2011.

    Google Scholar 

  21. A. García, E. Peña, and M. A. Martínez. Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: Influence of proximal and distal positions. Biorheology, 49:271–288, 2012.

    Google Scholar 

  22. P. Sáez, A. García, E. Peña, T.C. Gasser and M. A. Martínez. Microstructural analysis of fiber orientation in swine carotid artery: structural quantification and constitutive modelling. Submitted, 2015.

    Google Scholar 

  23. T. C. Gasser, R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface, 3:15–35, 2006.

    Google Scholar 

  24. S. Govindjee, G. J. Kay, and J. C. Simo. Anisotropic modelling and numerical simulation of brittle damage in concrete. Int J Numer Meth Engng, 38:3611–3633, 1995.

    Google Scholar 

  25. C. S. Herz. Bessel functions of matrix argument. Ann Math, 61:474–523, 1955.

    Google Scholar 

  26. G. A. Holzapfel, T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity, 61:1–48, 2000.

    Google Scholar 

  27. G. A. Holzapfel, T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behaviour of arterial walls: Continuum formultaion and finite element analysis. Eur J Mech A/Solids, 21:441–463, 2002.

    Google Scholar 

  28. G. A. Holzapfel and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil Trans R Soc A, 367:3445–3475, 2009.

    Google Scholar 

  29. G. A. Holzapfel and R. W. Ogden. Constitutive modelling of arteries. Phil Trans R Soc A, 466:1551–1597, 2010.

    Google Scholar 

  30. E. W. Hsu, A. L. Muzikant, S. A. Matulevicius, R. C. Penland, and C. S. Henriquez. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol HeartCirc Physiol, 274:H1627–H1634, 1998.

    Google Scholar 

  31. J. D. Humphrey. Mechanics of the arterial wall: Review and directions. Crit Rev Biomed Eng, 23:1–162, 1995.

    Google Scholar 

  32. J. W. Ju. On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. Int J Solids Struct, 25:803–833, 1989.

    Google Scholar 

  33. Y. Lanir. A structural theory for the homogeneous biaxial stress-strain relationship in flat collageneous tissues. J Biomech, 12:423–436, 1979.

    Google Scholar 

  34. Y. Lanir. Constitutive equations for fibrous connective tissues. J Biomech, 16:1–12, 1983.

    Google Scholar 

  35. E. Maher, M. Early, A. Creane, C Lally, and D. J. Kelly. Site specific inelasticity of arterial tissue. J Biomech, 45:1393–1399, 2012.

    Google Scholar 

  36. D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Siam J Appl Math, 11:431–441, 1963.

    Google Scholar 

  37. J. E. Marsden and T. J. R. Hughes. Mathematical Foundations of Elasticity. Dover, New York, 1994.

    Google Scholar 

  38. E. Peña. “. Application to soft biological tissues. Comp Mech, 48:407–420, 2011.

    Google Scholar 

  39. E. Peña. Prediction of the softening and damage effects with permanent set in fibrous biological materials. J Mech Phys Solids, 59:1808–1822, 2011.

    Google Scholar 

  40. E. Peña. Computational aspects of the numerical modelling of softening, damage and permanent set in soft biological tissues. Comput Struct, 130:57–72, 2014.

    Google Scholar 

  41. E. Peña, V. Alastrue, A. Laborda, M. A. Martínez, and M. Doblare. A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. J Biomech, 43:984–989, 2010.

    Google Scholar 

  42. E. Peña, A. Pérez del Palomar, B. Calvo, M. A. Martínez, and M. Doblaré. Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch Comput Method Eng, 14(1):47–91, 2007.

    Google Scholar 

  43. E. Peña, P. Martins, T. Mascarenhas, R. M. Natal-Jorge, A. Ferreira, M. Doblaré, and B. Calvo. Mechanical characterization of the softening behavior of human vaginal tissue. J Mech Behav Biomed, 4:275–283, 2011.

    Google Scholar 

  44. E. Peña, J. A. Peña, and M. Doblaré. On the Mullins effect and hysteresis of fibered biological materials: A comparison between continuous and discontinuous damage models. Int J Solids Struct, 46:1727–1735, 2009.

    Google Scholar 

  45. J. F. Rodríguez, V. Alastrue, and M. Doblaré. Finite element implementation of a stochastic three dimensional finite-strain damage model for fibrous soft tissue. Comput Methods Appl Mech Engrg, 197:946–958, 2008.

    Google Scholar 

  46. J. F. Rodríguez, F. Cacho, J. A. Bea, and M. Doblaré. A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J Mech Phys Solids, 54:564–886, 2006.

    Google Scholar 

  47. P. Sáez, V. Alastrué, E. Peña, M. Doblaré, and M. A. Martínez. Anisotropic microsphere-based approach to damage in soft fibered tissue. Biomechan Model Mechanobiol, 11:595–608, 2012.

    Google Scholar 

  48. P. Sáez, E. Peña, and M. A. Martínez. A structural approach including the behavior of collagen cross-links to model patient-specific human carotid arteries. Ann Biomed Eng, 42:1158–1169, 2014.

    Google Scholar 

  49. J. C. Simo. On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput Methods Appl Mech Engrg, 60:153–173, 1987.

    Google Scholar 

  50. J. C. Simo and J. W. Ju. Strain- and stress-based continuum damage models. I. Formulation. Int J Solids Struct, 23:821–840, 1987.

    Google Scholar 

  51. J. C. Simo and J. W. Ju. Strain- and stress-based continuum damage models. II. Computational aspects. Int J Solids Struct, 23:841–870, 1987.

    Google Scholar 

  52. J. C. Simo, R. L. Taylor, and K. S. Pister. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Engrg, 51:177–208, 1985.

    Google Scholar 

  53. J. F. Smith, P. B. Canham, and J. Starkey. Orientation of collagen in the tunica adventitia of the human cerebral artery measured with polarized light and the universal stage. J Ultrastruct Res, 77:133–45, 1981.

    Google Scholar 

  54. D. P. Sokolis. A passive strain-energy function for elastic and muscular arteries: correlation of material parameters with histological data. Med Biol Eng Comput, 48:507–518, 2010.

    Google Scholar 

  55. A. J. M. Spencer. Theory of Invariants. In Continuum Physics, pages 239–253. Academic Press, New York, 1971.

    Google Scholar 

  56. K. Takamizawa and K. Hayashi. Strain-Energy Density-Function and Uniform Strain Hypothesis for Arterial Mechanics. J Biomech, 20:7–17, 1987.

    Google Scholar 

  57. A. Tobolsky, I. Prettyman, and J Dillon. Stress relaxation of natural and synthetic rubber stocks. J Appl Phys, 15:380–395, 1944.

    Google Scholar 

  58. C.N. van den Broek, A. van der Horst, M. C. M. Rutten, and F. N. van de Vosse. A generic constitutive model for the passive porcine coronary artery. Biomech Mod Mechanobiol, 10:249–258, 2011.

    Google Scholar 

  59. J. A. Weiss, B. N. Maker, and S.Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Engrg, 135:107–128, 1996.

    Google Scholar 

  60. A. S. Wineman and K. R. Rajagopal. On a constitutive theory for materials undergoing microstructural changes. Arch Mech, 42:53–75, 1990.

    Google Scholar 

  61. R. Wulandana and A. M. Robertson. An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech Model Mechanbiol, 4:235–248, 2005.

    Google Scholar 

  62. M. Zullinger, P. Fridez, K. Hayashi, and N. Stergiopulos. A strain energy function for arteries accounting for wall composition and structure. J Biomech, 37:989–1000, 2004.

    Google Scholar 

  63. M. Zullinger, A. Rachev, and N. Stergiopulos. A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am J Physiol Heart Circ Physiol, 287:H1335–H1343, 2004.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness (DPI2010-20746-C03-01 and PRI-AIBDE-2011-1216) and the Instituto de Salud Carlos III (ISCIII) through the CIBER initiative and the Plataform for Biological Tissue Characterization of CIBER-BBN. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estefania Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Peña, E. (2015). On the Microstructural Modeling of Vascular Tissues. In: Tavares, J., Natal Jorge, R. (eds) Computational and Experimental Biomedical Sciences: Methods and Applications. Lecture Notes in Computational Vision and Biomechanics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-15799-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15799-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15798-6

  • Online ISBN: 978-3-319-15799-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics