Skip to main content

Oxidative Mechanisms in Liver Senescence and Regeneration

  • Chapter
Studies on Hepatic Disorders

Abstract

Reactive oxygen species (ROS), including both radical (e.g., O2 , OH) and non-radical (e.g., H2O2) compounds, are ubiquitously present in the biosphere and are continuously generated within our cells. As such, they are intimately entrenched with several metabolic pathways, particularly with those involving oxy-reductive processes.

Given their extreme chemical reactivity, expressed in their name, ROS have been historically associated with cell damage, resulting from the oxidation of both small and large cellular constituents.

It is only during the past 10–15 years that this view has received a profound re-orientation: it is now clear that ROS can indeed function as regulatory signals in basic cellular processes, including differentiation, tissue pattern formation, and cell cycle control. In fact, several lines of evidence indicate that ROS do not simply represent a dangerous by-product of oxygen-centered cell metabolism; rather, they are actively generated to help establishing and maintaining the redox balance of the cell.

Within this novel conceptual context, this chapter will address the role of ROS signaling in the regulation of the cell cycle and the induction of cell senescence, with specific reference to the liver and to hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, D’Adda di Fagagna F, Bernard D, Hernando E, Gil J (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    CAS  PubMed  Google Scholar 

  2. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 89:10114–10118

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5:463–471

    CAS  PubMed  Google Scholar 

  4. Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor–host interactions. Cancer Metastasis Rev 25:387–408

    CAS  PubMed  Google Scholar 

  5. Apte U, Gkretsi V, Bowen WC, Mars WM, Luo JH, Donthamsetty S, Orr A, Monga SP, Wu C, Michalopoulos GK (2009) Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase. Hepatology 50:844–851

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Aravinthan A, Pietrosi G, Hoare M, Jupp J, Marshall A, Verrill C, Davies S, Bateman A, Sheron N, Allison M, Alexander GJ (2013) Hepatocyte expression of the senescence marker p21 is linked to fibrosis and an adverse liver-related outcome in alcohol-related liver disease. PLoS One 8:e72904

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Aravinthan A, Scarpini C, Tachtatzis P, Verma S, Penrhyn-Lowe S, Harvey R, Davies SE, Allison M, Coleman N, Alexander G (2013) Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol 58:549–556

    CAS  PubMed  Google Scholar 

  8. Arden KC (2008) FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene 27:2345–2350

    CAS  PubMed  Google Scholar 

  9. Avruch J, Zhou D, Fitamant J, Bardeesy N (2011) Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development. Br J Cancer 104:24–32

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Banito A, Lowe SW (2013) A new development in senescence. Cell 155:977–978

    CAS  PubMed  Google Scholar 

  12. Ben-Porath I, Weinberg RA (2004) When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113:8–13

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Beyer TA, Xu W, Teupser D, auf dem Keller U, Bugnon P, Hildt E, Thiery J, Kan YW, Werner S (2008) Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J 27:212–223

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857

    CAS  PubMed  Google Scholar 

  15. Blagosklonny MV (2013) Aging is not programmed: genetic pseudo-program is a shadow of developmental growth. Cell Cycle 12:3736–3742

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811–826

    CAS  PubMed  Google Scholar 

  17. Borkham-Kamphorst E, Schaffrath C, Van de Leur E, Haas U, Tihaa L, Meurer SK, Nevzorova YA, Liedtke C, Weiskirchen R (2014) The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling. Biochim Biophys Acta 1843:902–914

    CAS  PubMed  Google Scholar 

  18. Braig M, Schmitt C (2006) Tumor development oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66:2881–2884

    CAS  PubMed  Google Scholar 

  19. Brookes S, Rowe J, Gutierrez Del Arroyo A, Bond J, Peters G (2004) Contribution of p16(INK4a) to replicative senescence of human fibroblasts. Exp Cell Res 298:549–559

    CAS  PubMed  Google Scholar 

  20. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    CAS  PubMed  Google Scholar 

  21. Brunt EM, Walsh SN, Hayashi PH, Labundy J, Di Bisceglie AM (2007) Hepatocyte senescence in end-stage chronic liver disease: a study of cyclin-dependent kinase inhibitor p21 in liver biopsies as a marker for progression to hepatocellular carcinoma. Liver Int 27:662–671

    CAS  PubMed  Google Scholar 

  22. Bucher NL (1963) Regeneration of the mammalian liver. Int Rev Cytol 15:245–300

    CAS  PubMed  Google Scholar 

  23. Burch PM, Heintz NH (2005) Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal 7:741–751

    CAS  PubMed  Google Scholar 

  24. Burch PM, Yuan Z, Loonen A, Heintz NH (2004) An extracellular signal-regulated kinase 1- and 2-dependent program of chromatin trafficking of c-Fos and Fra-1 is required for cyclin D1 expression during cell cycle reentry. Mol Cell Biol 24:4696–4709

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Burgess DJ (2011) Senescence: Tumorigenesis under surveillance. Nat Rev Cancer 12:6

    PubMed  Google Scholar 

  26. Burhans WC, Heintz NH (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 47:1282–1293

    CAS  PubMed  Google Scholar 

  27. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27:2276–2288

    CAS  PubMed  Google Scholar 

  28. Campbell JS, Argast GM, Yuen SY, Hayes B, Fausto N (2011) Inactivation of p38 MAPK during liver regeneration. Int J Biochem Cell Biol 43:180–188

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Hui L, Bakiri L, Mairhorfer A, Schweifer N, Haslinger C, Kenner L, Komnenovic V, Scheuch H, Beug H, Wagner EF (2007) p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 39:741–749

    CAS  PubMed  Google Scholar 

  30. Campisi J, D’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    CAS  PubMed  Google Scholar 

  31. Campisi J, Andersen JK, Kapahi P, Melov S (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21:354–359

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Campisi J (2014) Cell biology: the beginning of the end. Nature 505:35–36

    PubMed Central  PubMed  Google Scholar 

  33. Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF Jr (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181:1129–1139

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Chisari AN, Sancho P, Caja L, Bertran E, Fabregat I (2012) Lack of amino acids in mouse hepatocytes in culture induces the selection of preneoplastic cells. Cell Signal 24:325–332

    CAS  PubMed  Google Scholar 

  35. Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27:2312–2319

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Chiu J, Dawes IW (2012) Redox control of cell proliferation. Trends Cell Biol 22:592–601

    CAS  PubMed  Google Scholar 

  37. Chuikov S, Levi BP, Smith ML, Morrison SJ (2010) Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat Cell Biol 12:999–1006

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Clavel S, Siffroi-Fernandez S, Coldefy AS, Boulukos K, Pisani DF, Derijard B (2010) Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol 30:470–480

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Clavijo-Cornejo D, Enriquez-Cortina C, López-Reyes A, Domínguez-Pérez M, Nuño N, Domínguez-Meraz M, Bucio L, Souza V, Factor VM, Thorgeirsson SS, Gutiérrez-Ruiz MC, Gómez-Quiroz LE (2013) Biphasic regulation of the NADPH oxidase by HGF/c-Met signaling pathway in primary mouse hepatocytes. Biochimie 95:1177–1184

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Coppé JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic ras and the p53tumor suppressor. PLoS Biol 6:2853–2868

    PubMed  Google Scholar 

  41. Cruise JL, Knechtle SJ, Bollinger RR, Kuhn C, Michalopoulos G (1987) Alpha 1-adrenergic effects and liver regeneration. Hepatology 7:1189–1194

    CAS  PubMed  Google Scholar 

  42. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    PubMed  Google Scholar 

  43. Dansen TB, Smits AMM, van Triest M, de Keizer PLJ, van Leenen D, Groot Koerkamp M, Szypowska M, Meppelink A, Brenkman AB, Yodoi J, Holstege FCP, Burgering BMT (2009) Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat Chem Biol 5:664–672

    CAS  PubMed  Google Scholar 

  44. Dayoub R, Vogel A, Schuett J, Lupke M, Spieker SM, Kettern N, Hildt E, Melter M, Weiss TS (2013) Nrf2 activates augmenter of liver regeneration (ALR) via antioxidant response element and links oxidative stress to liver regeneration. Mol Med 19:237–244

    PubMed Central  PubMed  Google Scholar 

  45. de Keizer PL, Burgering BM, Dansen TB (2011) Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid Redox Signal 14:1093–1106

    PubMed  Google Scholar 

  46. De Marais DJ (2000) Evolution. When did photosynthesis emerge on Earth? Science 289:1703–1705

    PubMed  Google Scholar 

  47. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A 98:2170–2175

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Dulić V, Beney GE, Frebourg G, Drullinger LF, Stein GH (2000) Uncoupling between phenotypic senescence and cell cycle arrest in aging p21-deficient fibroblasts. Mol Cell Biol 20:6741–6754

    PubMed Central  PubMed  Google Scholar 

  50. Ekholm SV, Reed SI (2000) Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 12:676–684

    CAS  PubMed  Google Scholar 

  51. Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL, Burgering BM (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23:4802–4812

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Evarts RP, Raab M, Marsden E, Thorgeirsson SS (1986) Histochemical changes in livers from portacaval-shunted rats. J Natl Cancer Inst 76:731–738

    CAS  PubMed  Google Scholar 

  53. Factor VM, Jensen MR, Thorgeirsson SS (1997) Coexpression of C-myc and transforming growth factor alfa in the liver promotes early replicative senescence and diminishes regenerative capacity after partial hepatectomy in transgenic mice. Hepatology 26:1434–1443

    CAS  PubMed  Google Scholar 

  54. Falkowski P (2006) Evolution. Tracing oxygen’s imprint on earth’s metabolic evolution. Science 311:1724–1725

    CAS  PubMed  Google Scholar 

  55. Fausto N, Campbell JS, Riehle KJ (2006) Liver regeneration. Hepatology 43(2 Suppl 1):S45–S53

    CAS  PubMed  Google Scholar 

  56. Fishback FC (1929) A morphologic study of regeneration of the liver after partial removal. Arch Pathol 7:955–977

    Google Scholar 

  57. Flinder LI, Timofeeva OA, Rosseland CM, Wierød L, Huitfeldt HS, Skarpen E (2011) EGF-induced ERK-activation downstream of FAK requires rac1-NADPH oxidase. J Cell Physiol 226:2267–2278

    CAS  PubMed  Google Scholar 

  58. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105

    CAS  PubMed  Google Scholar 

  59. Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14:355–365

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Gewirtz DA (2013) Autophagy and senescence: a partnership in search of definition. Autophagy 9:808–812

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780:1273–1290

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Goswami PC, Sheren J, Albee LD, Parsian A, Sim JE, Ridnour LA, Higashikubo R, Gius D, Hunt CR, Spitz DR (2000) Cell cycle-coupled variation in topoisomerase IIalpha mRNA is regulated by the 3′-untranslated region. Possible role of redox-sensitive protein binding in mRNA accumulation. J Biol Chem 275:38384–38392

    CAS  PubMed  Google Scholar 

  63. Gutierrez-Reyes G, del Carmen Garcia de Leon M, Varela-Fascinetto G, Valencia P, Pérez Tamayo R, Rosado CG, Labonne BF, Rochilin NM, Garcia RM, Valadez JA, Latour GT, Corona DL, Diaz GR, Zlotnik A, Kershenobich D (2010) Cellular senescence in livers from children with end stage liver disease. PLoS One 5:e10231

    PubMed Central  PubMed  Google Scholar 

  64. Haddad JJ, Harb HL (2005) L-gamma-glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 42:987–1014

    CAS  PubMed  Google Scholar 

  65. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    CAS  PubMed  Google Scholar 

  66. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  67. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    CAS  PubMed  Google Scholar 

  68. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  PubMed  Google Scholar 

  69. Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21:569–576

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:708

    PubMed Central  PubMed  Google Scholar 

  71. Higgins GM, Anderson RM (1931) Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 12:186–202

    Google Scholar 

  72. Ho KK, Myatt SS, Lam EW (2008) Many forks in the path: cycling with FoxO. Oncogene 27:2300–2311

    CAS  PubMed  Google Scholar 

  73. Hu J, Dong L, Outten CE (2008) The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 283:29126–29134

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102:1649–1654

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Huang TT, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ (2000) Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 55:B5–B9

    CAS  PubMed  Google Scholar 

  76. Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502

    CAS  PubMed  Google Scholar 

  77. Jaiswal A (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207

    CAS  PubMed  Google Scholar 

  78. Jeong AY, Lee MY, Lee SH, Park JH, Han HJ (2009) PPARdelta agonist-mediated ROS stimulates mouse embryonic stem cell proliferation through cooperation of p38 MAPK and Wnt/beta-catenin. Cell Cycle 8:611–619

    CAS  PubMed  Google Scholar 

  79. Jiang YY, Kong DX, Qin T, Zhang HY (2010) How does oxygen rise drive evolution? Clues from oxygen-dependent biosynthesis of nuclear receptor ligands. Biochem Biophys Res Commun 391:1158–1160

    CAS  PubMed  Google Scholar 

  80. Johnston DG, Johnson GA, Alberti KG, Millward-Sadler GH, Mitchell J, Wright R (1986) Hepatic regeneration and metabolism after partial hepatectomy in diabetic rats: effects of insulin therapy. Eur J Clin Invest 16:384–390

    CAS  PubMed  Google Scholar 

  81. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC, Sicinski P, Fauq A, Golde TE, Osborne BA (2009) Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 113:1689–1698

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Kannan R, Jin M, Gamulescu MA, Hinton DR (2004) Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor. Free Radic Biol Med 37:166–175

    CAS  PubMed  Google Scholar 

  83. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, Iken M, Vucur M, Weiss S, Heikenwalder M, Khan S, Gil J, Bruder D, Manns M, Schirmacher P, Tacke F, Ott M, Luedde T, Longerich T, Kubicka S, Zender L (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    CAS  PubMed  Google Scholar 

  84. Kaposi-Novak P, Lee JS, Gòmez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS (2006) Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 116:1582–1595

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Kim KH, Chen CC, Monzon RI, Lau LF (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33:2078–2090

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Köhler C, Bell AW, Bowen WC, Monga SP, Fleig W, Michalopoulos GK (2004) Expression of Notch-1 and its ligand Jagged-1 in rat liver during liver regeneration. Hepatology 39:1056–1065

    PubMed Central  PubMed  Google Scholar 

  87. Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS, Gao B (2012) Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56:1150–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Burgering BM, Bos JL (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634

    CAS  PubMed  Google Scholar 

  89. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Ksiazek K (2010) Bacterial aging: from mechanistic basis to evolutionary perspective. Cell Mol Life Sci 67:3131–3137

    CAS  PubMed  Google Scholar 

  91. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin dependent inflammatory network. Cell 133:1019–1031

    CAS  PubMed  Google Scholar 

  92. Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9:81–94

    CAS  PubMed  Google Scholar 

  93. Kumar S, Millis AJ, Baglioni C (1992) Expression of interleukin 1-inducible genes and production of interleukin 1 by aging human fibroblasts. Proc Natl Acad Sci U S A 89:4683–4687

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Laconi S, Curreli F, Diana S, Pasciu D, De Filippo G, Sarma DS, Pani P, Laconi E (1999) Liver regeneration in response to partial hepatectomy in rats treated with retrorsine: a kinetic study. J Hepatol 31:1069–1074

    CAS  PubMed  Google Scholar 

  95. Laconi S, Pani P, Pillai S, Pasciu D, Sarma DS, Laconi E (2001) A growth-constrained environment drives tumor progression in vivo. Proc Natl Acad Sci U S A 98:7806–7811

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Lane N (2011) Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations. Bioessays 33:860–869

    CAS  PubMed  Google Scholar 

  97. Laurent A, Nicco C, Chéreau C, Goulvestre C, Alexandre J, Alves A, Lévy E, Goldwasser F, Panis Y, Soubrane O, Weill B, Batteux F (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65:948–956

    CAS  PubMed  Google Scholar 

  98. Lavia P, Jansen-Dürr P (1999) E2F target genes and cell-cycle checkpoint control. Bioessays 21:221–223

    CAS  PubMed  Google Scholar 

  99. LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP, Hillan KJ, Ferrara N (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299:890–893

    CAS  PubMed  Google Scholar 

  100. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX, Ferrans VJ, Howard BH, Finkel T (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940

    CAS  PubMed  Google Scholar 

  101. Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277:20336–20342

    CAS  PubMed  Google Scholar 

  102. Leontieva OV, Lenzo F, Demidenko ZN, Blagosklonny MV (2012) Hyper-mitogenic drive coexists with mitotic incompetence in senescent cells. Cell Cycle 11:4642–4649

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Li W, Kong AN (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48:91–104

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, Richardson A (2003) Genetic mouse models of extended lifespan. Exp Gerontol 38:1353–1364

    CAS  PubMed  Google Scholar 

  105. Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW, Aaronson SA (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Mantovani A, Bonecchi R, Locati M (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6:907–918

    CAS  PubMed  Google Scholar 

  108. Marí M, Colell A, Morales A, von Montfort C, Garcia-Ruiz C, Fernández-Checa JC (2010) Redox control of liver function in health and disease. Antioxid Redox Signal 12:1295–1331

    PubMed Central  PubMed  Google Scholar 

  109. Marongiu F, Doratiotto S, Sini M, Serra MP, Laconi E (2012) Cancer as a disease of tissue pattern formation. Prog Histochem Cytochem 47:175–207

    PubMed  Google Scholar 

  110. Marongiu F, Serra MP, Sini M, Angius F, Laconi E (2014) Clearance of senescent hepatocytes in a neoplastic-prone microenvironment delays the emergence of hepatocellular carcinoma. Aging (Albany NY) 6:26–34

    CAS  Google Scholar 

  111. Mars WM, Liu ML, Kitson RP, Goldfarb RH, Gabauer MK, Michalopoulos GK (1995) Immediate early detection of urokinase receptor after partial hepatectomy and its implications for initiation of liver regeneration. Hepatology 21:1695–1701

    CAS  PubMed  Google Scholar 

  112. Mars WM, Zarnegar R, Michalopoulos GK (1993) Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 143:949–958

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Mauro F, Grasso A, Tolmach LJ (1969) Variations in sulfhydryl, disulfide, and protein content during synchronous and asynchronous growth of HeLa cells. Biophys J 9:1377–1397

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Menon SG, Goswami PC (2007) A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26:1101–1109

    CAS  PubMed  Google Scholar 

  115. Menon SG, Sarsour EH, Spitz DR, Higashikubo R, Sturm M, Zhang H, Goswami PC (2003) Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res 63:2109–2117

    CAS  PubMed  Google Scholar 

  116. Mohammed FF, Khokha R (2005) Thinking outside the cell: proteases regulate hepatocyte division. Trends Cell Biol 15:555–563

    CAS  PubMed  Google Scholar 

  117. Morimoto H, Iwata K, Ogonuki N, Inoue K, Atsuo O, Kanatsu-Shinohara M, Morimoto T, Yabe-Nishimura C, Shinohara T (2013) ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell 12:774–786

    CAS  PubMed  Google Scholar 

  118. Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213:286–300

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Michalopoulos GK (2010) Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol 176:2–13

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Milne LS (1909) The histology of liver tissue regeneration. J Pathol Bacteriol 13:127–160

    Google Scholar 

  121. Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118

    PubMed  Google Scholar 

  122. Nakae J, Oki M, Cao Y (2008) The FoxO transcription factors and metabolic regulation. FEBS Lett 582:54–67

    CAS  PubMed  Google Scholar 

  123. Naugler WE, Karin M (2008) NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18:19–26

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Nault JC, Amaddeo G, Zucman-Rossi J (2012) When activated oncogene meets immunity: a fight to prevent liver tumor initiation. Hepatology 56:387–389

    PubMed  Google Scholar 

  125. Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Noseda M, Chang L, McLean G, Grim JE, Clurman BE, Smith LL, Karsan A (2004) Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol 24:8813–8822

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31:443–448

    CAS  PubMed  Google Scholar 

  128. Olsen PS, Poulsen SS, Kirkegaard P (1985) Adrenergic effects on secretion of epidermal growth factor from Brunner’s glands. Gut 26:920–927

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J (2009) Cell surface-bound IL-1α is upstream regulator of the senescence-associated IL-6/IL-8 cytochine network. Proc Natl Acad Sci U S A 106:17031–17036

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Ortiz C, Caja L, Sancho P, Bertran E, Fabregat I (2008) Inhibition of the EGF receptor blocks autocrine growth and increases the cytotoxic effects of doxorubicin in rat hepatoma cells: role of reactive oxygen species production and glutathione depletion. Biochem Pharmacol 75:1935–1945

    CAS  PubMed  Google Scholar 

  131. Ozaki M, Haga S, Zhang HQ, Irani K, Suzuki S (2003) Inhibition of hypoxia/reoxygenation-induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Akt kinase upon rac1. Cell Death Differ 10:508–515

    CAS  PubMed  Google Scholar 

  132. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    CAS  PubMed  Google Scholar 

  133. Pan D (2007) Hippo signaling in organ size control. Genes Dev 21:8868–8897

    Google Scholar 

  134. Paradis V, Youssef N, Dargère D, Bâ N, Bonvoust F, Deschatrette J, Bedossa P (2001) Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol 32:327–332

    CAS  PubMed  Google Scholar 

  135. Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 71:1286–1290

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Parola M, Bellomo G, Robino G, Barrera G, Dianzani MU (1999) 4-Hydroxynonenal as a biological signal: molecular basis and pathophysiological implications. Antioxid Redox Signal 1:255–284

    CAS  PubMed  Google Scholar 

  138. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    PubMed Central  PubMed  Google Scholar 

  139. Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35:7505–7513

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Pelicci PG (2004) Do tumor-suppressive mechanisms contribute to organism aging by inducing stem cell senescence? J Clin Invest 113:4–7

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Pendergrass WR, Gray M, Wold MS, Luo P, Norwood T (1999) Analysis of the capacity of extracts from normal human young and senescent fibroblasts to support DNA synthesis in vitro. J Cell Biochem 73:176–187

    CAS  PubMed  Google Scholar 

  143. Pérez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790:1005–1014

    PubMed Central  PubMed  Google Scholar 

  144. Pérez-Garijo A, Steller H (2014) The benefits of aging: cellular senescence in normal development. EMBO J 33:99–100

    PubMed Central  PubMed  Google Scholar 

  145. Rai P (2012) Human Mut T Homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS. Small GTPases 3:120–125

    PubMed Central  PubMed  Google Scholar 

  146. Rai P, Young JJ, Burton DG, Giribaldi MG, Onder TT, Weinberg RA (2011) Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 30:1489–1496

    CAS  PubMed  Google Scholar 

  147. Rapkine L (1931) Su les processus chimiques au cours de la division cellulaire. Ann Physiol Physiochem Biol 7:382–418

    CAS  Google Scholar 

  148. Raymond J, Blankenship RE (2004) Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2:199–203

    CAS  Google Scholar 

  149. Raymond J, Segrè D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–1767

    CAS  PubMed  Google Scholar 

  150. Reddy NM, Kleeberger SR, Yamamoto M, Kensler TW, Scollick C, Biswal S, Reddy SP (2007) Genetic dissection of the Nrf2-dependent redox signaling-regulated transcriptional programs of cell proliferation and cytoprotection. Physiol Genomics 32:74–81

    CAS  PubMed  Google Scholar 

  151. Rees DC, Howard JB (2003) The interface between the biological and inorganic worlds: iron-sulfur metalloclusters. Science 300:929–931

    CAS  PubMed  Google Scholar 

  152. Reuben A (2004) Prometheus and Pandora—together again. Hepatology 39:1460–1463

    PubMed  Google Scholar 

  153. Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to p16(INK4A) enrichment and the premature senescence of normal fibroblasts. Oncogene 16:1113–1123

    CAS  PubMed  Google Scholar 

  154. Rolo AP, Teodoro JS, Palmeira CM (2012) Role of oxidative stress in the pathogenesis of non alcoholic steatohepatitis. Free Radic Biol Med 52:59–69

    CAS  PubMed  Google Scholar 

  155. Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20:126–136

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Sancho P, Bertran E, Caja L, Carmona-Cuenca I, Murillo MM, Fabregat I (2009) The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-beta-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms. Biochim Biophys Acta 1793:253–263

    CAS  PubMed  Google Scholar 

  158. Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321:1095–1100

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y (2008) Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology 48:186–195

    PubMed  Google Scholar 

  160. Satyanarayana A, Kaldis P (2009) Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28:2925–2939

    CAS  PubMed  Google Scholar 

  161. Schirmacher P, Geerts A, Jung W, Pietrangelo A, Rogler CE, Dienes HP (1993) The role of Ito cells in the biosynthesis of HGF-SF in the liver. EXS 65:285–299

    CAS  PubMed  Google Scholar 

  162. Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner D (2003) Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37:653–664

    CAS  PubMed  Google Scholar 

  163. Serra MP, Marongiu F, Sini M, Laconi E (2012) Hepatocyte senescence in vivo following preconditioning for liver repopulation. Hepatology 56:760–768

    CAS  PubMed  Google Scholar 

  164. Serviddio G, Bellanti F, Vendemiale G (2013) Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radic Biol Med 65:952–968

    CAS  PubMed  Google Scholar 

  165. Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102:407–410

    CAS  PubMed  Google Scholar 

  166. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    CAS  PubMed  Google Scholar 

  167. Sohal RS, Brunk UT (1992) Mitochondrial production of pro-oxidants and cellular senescence. Mutat Res 275:295–304

    CAS  PubMed  Google Scholar 

  168. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Sozou PD, Seymour RM (2004) To age or not to age. Proc Biol Sci 271:457–463

    PubMed Central  PubMed  Google Scholar 

  170. Stolz DB, Mars WM, Petersen BE, Kim TH, Michalopoulos GK (1999) Growth factor signal transduction immediately after two-thirds partial hepatectomy in the rat. Cancer Res 59:3954–3960

    CAS  PubMed  Google Scholar 

  171. Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, Keyes WM (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130

    CAS  PubMed  Google Scholar 

  172. Takami T, Kaposi-Novak P, Uchida K, Gomez-Quiroz LE, Conner EA, Factor VM, Thorgeirsson SS (2007) Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Res 67:9844–9851

    CAS  PubMed  Google Scholar 

  173. Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 8:197–204

    CAS  PubMed  Google Scholar 

  174. Tiniakos DG, Kandilis A, Geller SA (2010) Tityus: a forgotten myth of liver regeneration. J Hepatol 53:357–361

    PubMed  Google Scholar 

  175. Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signalling. Cell 121:667–670

    CAS  PubMed  Google Scholar 

  176. Tormos AM, Arduini A, Talens-Visconti R, del Barco Barrantes I, Nebreda AR, Sastre J (2013) Liver-specific p38α deficiency causes reduced cell growth and cytokinesis failure during chronic biliary cirrhosis in mice. Hepatology 57:1950–1961

    CAS  PubMed  Google Scholar 

  177. Trusina A (2014) Stress induced telomere shortening: longer life with less mutations? BMC Syst Biol 8:27

    PubMed Central  PubMed  Google Scholar 

  178. Tsuboi S (1999) Elevation of glutathione level in rat hepatocytes by hepatocyte growth factor via induction of gamma-glutamylcysteine synthetase. J Biochem 126:815–820

    CAS  PubMed  Google Scholar 

  179. Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–1158

    CAS  PubMed  Google Scholar 

  180. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37

    PubMed  Google Scholar 

  181. von Zglinicki T, Pilger R, Sitte N (2000) Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 28:64–74

    Google Scholar 

  182. von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP (2005) Human cell senescence as a DNA damage response. Mech Ageing Dev 126:111–117

    Google Scholar 

  183. Wang X, Liu JZ, Hu JX, Wu H, Li YL, Chen HL, Bai H, Hai CX (2011) ROS-activated p38 MAPK/ERK-Akt cascade plays a central role in palmitic acid-stimulated hepatocyte proliferation. Free Radic Biol Med 51:539–551

    PubMed  Google Scholar 

  184. Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, Flemming P, Franco S, Blasco MA, Manns MP, Rudolph KL (2002) Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J 16:935–942

    CAS  PubMed  Google Scholar 

  185. Wilson DW, Lamé MW, Dunston SK, Segall HJ (2000) DNA damage cell checkpoint activities are altered in monocrotaline pyrrole-induced cell cycle arrest in human pulmonary artery endothelial cells. Toxicol Appl Pharmacol 166:69–80

    CAS  PubMed  Google Scholar 

  186. Xue L, Zhou B, Liu X, Wang T, Shih J, Qi C, Heung Y, Yen Y (2006) Structurally dependent redox property of ribonucleotide reductase subunit p53R2. Cancer Res 66:1900–1905

    CAS  PubMed  Google Scholar 

  187. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, Huang H, Kuo HP, Lee DF, Li LY, Lien HC, Cheng X, Chang KJ, Hsiao CD, Tsai FJ, Tsai CH, Sahin AA, Muller WJ, Mills GB, Yu D, Hortobagyi GN, Hung MC (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10:138–148

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E, Ohtani N (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101

    CAS  PubMed  Google Scholar 

  189. Zhu H, Jia Z, Misra H, Li YR (2012) Oxidative stress and redox signaling mechanisms of alcoholic liver disease: updated experimental and clinical evidence. J Dig Dis 13:133–142

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Laconi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marongiu, F., Serra, M.P., Laconi, E. (2015). Oxidative Mechanisms in Liver Senescence and Regeneration. In: Albano, E., Parola, M. (eds) Studies on Hepatic Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15539-5_3

Download citation

Publish with us

Policies and ethics