Skip to main content

Oxidative Stress in Chronic Viral Hepatitis

  • Chapter
Studies on Hepatic Disorders

Abstract

Chronic viral hepatitis (CVH), a state of persistent infection marked by inflammation, is a global health concern with more than half a billion people chronically infected with hepatitis C virus (HCV) and/or hepatitis B virus (HBV). The mechanism by which CVH induces liver disease, including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), involves oxidative stress. Oxidative stress has been extensively observed in CVH, particularly in chronic hepatitis C (CHC). Mechanisms of oxidative stress in CHC include hepatic iron overload, elevated mitochondrial reactive oxygen species (ROS) generation, upregulation of NADPH oxidase (Nox) enzymes in hepatocytes and host immune cells, and decreases in the host antioxidant defense. Oxidative stress has also been reported in chronic hepatitis B (CHB). Progression to HCC is marked by accumulation of oxidative DNA damage and several redox-regulated processes including tumor necrosis factor α (TNF-α), hypoxia-inducible factor 1 (HIF-1), and activation of toll-like receptor 4 (TLR4) signaling. Evidence suggests that hepatic fibrosis, mediated by transforming growth factor β (TGF-β), and extrahepatic manifestations of CHC, which include type 2 diabetes mellitus (T2DM), may also be mediated by oxidative stress. Further studies, however, will be needed to determine whether strategies that target oxidative stress would be beneficial in the treatment of CVH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perz JF, Armstrong GL, Farrington LA et al (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45:529–538. doi:10.1016/j.jhep.2006.05.013

    PubMed  Google Scholar 

  2. Armstrong GL, Wasley A, Simard EP et al (2006) The prevalence of hepatitis C virus infection in the United States, 1999 through 2002. Ann Intern Med 144:705–714

    PubMed  Google Scholar 

  3. Wasley A, Kruszon-Moran D, Kuhnert W et al (2010) The prevalence of hepatitis B virus infection in the United States in the era of vaccination. J Infect Dis 202:192–201. doi:10.1086/653622

    PubMed  Google Scholar 

  4. Global Burden of Hepatitis C Working Group (2004) Global burden of disease (GBD) for hepatitis C. J Clin Pharmacol 44:20–29. doi:10.1177/0091270003258669

    Google Scholar 

  5. Franco E, Bagnato B, Marino MG et al (2012) Hepatitis B: epidemiology and prevention in developing countries. World J Hepatol 4:74. doi:10.4254/wjh.v4.i3.74

    PubMed Central  PubMed  Google Scholar 

  6. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249. doi:10.3322/caac.20006

    PubMed  Google Scholar 

  7. McMahon BJ (2009) The natural history of chronic hepatitis B virus infection. Hepatology 49:S45–S55. doi:10.1002/hep.22898

    CAS  PubMed  Google Scholar 

  8. Tong MJ, Farra NS, Reikes AR, Co RL (1995) Clinical outcomes after transfusion-associated hepatitis. C N Engl J Med 332:1463–1466. doi:10.1056/NEJM199506013322202

    CAS  Google Scholar 

  9. Choo QL, Kuo G, Weiner AJ et al (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244:359–362

    CAS  PubMed  Google Scholar 

  10. Tobler LH, Busch MP (1997) History of posttransfusion hepatitis. Clin Chem 43:1487–1493

    CAS  PubMed  Google Scholar 

  11. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142:1264–1273. doi:10.1053/j.gastro.2011.12.061, e1

    PubMed Central  PubMed  Google Scholar 

  12. Averhoff FM, Glass N, Holtzman D (2012) Global burden of hepatitis C: considerations for healthcare providers in the United States. Clin Infect Dis 55:S10–S15. doi:10.1093/cid/cis361

    PubMed  Google Scholar 

  13. Brown RS, Gaglio PJ (2003) Scope of worldwide hepatitis C problem. Liver Transpl 9:S10–S13. doi:10.1053/jlts.2003.50244

    PubMed  Google Scholar 

  14. Altekruse SF, McGlynn KA, Reichman ME (2009) Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol 27:1485–1491. doi:10.1200/JCO.2008.20.7753

    PubMed Central  PubMed  Google Scholar 

  15. Dammacco F, Gatti P, Sansonno D (1998) Hepatitis C virus infection, mixed cryoglobulinemia, and non-Hodgkin’s lymphoma: an emerging picture. Leuk Lymphoma 31:463–476. doi:10.3109/10428199809057606

    CAS  PubMed  Google Scholar 

  16. DeCastro M, Sánchez J, Herrera JF et al (1993) Hepatitis C virus antibodies and liver disease in patients with porphyria cutanea tarda. Hepatology 17:551–557

    CAS  PubMed  Google Scholar 

  17. el-Zayadi AR, Selim OE, Hamdy H et al (1998) Association of chronic hepatitis C infection and diabetes mellitus. Trop Gastroenterol 19:141–144

    CAS  PubMed  Google Scholar 

  18. Feld JJ, Hoofnagle JH (2005) Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436:967–972. doi:10.1038/nature04082

    CAS  PubMed  Google Scholar 

  19. Cunningham M, Foster GR (2012) Efficacy and safety of telaprevir in patients with genotype 1 hepatitis C infection. Therap Adv Gastroenterol 5:139–151. doi:10.1177/1756283X11426895

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Marino Z, van Bommel F, Forns X, Berg T (2013) New concepts of sofosbuvir-based treatment regimens in patients with hepatitis C. Gut 63(2):207–215. doi:10.1136/gutjnl-2013-305771

    PubMed  Google Scholar 

  21. Lawitz E, Mangia A, Wyles D et al (2013) Sofosbuvir for previously untreated chronic hepatitis C infection. N Engl J Med 368:1878–1887. doi:10.1056/NEJMoa1214853

    CAS  PubMed  Google Scholar 

  22. Zeisel MB, Fofana I, Fafi-Kremer S, Baumert TF (2011) Hepatitis C virus entry into hepatocytes: molecular mechanisms and targets for antiviral therapies. J Hepatol 54:566–576. doi:10.1016/j.jhep.2010.10.014

    CAS  PubMed  Google Scholar 

  23. Romero-Brey I, Merz A, Chiramel A et al (2012) Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 8:e1003056. doi:10.1371/journal.ppat.1003056

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Lukavsky PJ (2009) Structure and function of HCV IRES domains. Virus Res 139:166–171. doi:10.1016/j.virusres.2008.06.004

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Pestova TV, Shatsky IN, Fletcher SP et al (1998) A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12:67–83

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Lindenbach BD, Meuleman P, Ploss A et al (2006) Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci U S A 103:3805–3809. doi:10.1073/pnas.0511218103

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Lindenbach BD, Rice CM (2013) The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol 11:688–700. doi:10.1038/nrmicro3098

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Griffin SDC (2009) Plugging the holes in hepatitis C virus antiviral therapy. Proc Natl Acad Sci U S A 106:12567–12568. doi:10.1073/pnas.0906760106

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Atkins E, Tatineni R, Li H et al (2014) The stability of secreted, acid-labile H77/JFH-1 hepatitis C virus (HCV) particles is altered by patient isolate genotype 1a p7 sequences. Virology 448:117–124. doi:10.1016/j.virol.2013.10.003

    CAS  PubMed  Google Scholar 

  30. Whitfield T, Miles AJ, Scheinost JC et al (2011) The influence of different lipid environments on the structure and function of the hepatitis C virus p7 ion channel protein. Mol Membr Biol 28:254–264. doi:10.3109/09687688.2011.581253

    CAS  PubMed  Google Scholar 

  31. Chew CF, Vijayan R, Chang J et al (2009) Determination of pore-lining residues in the hepatitis C virus p7 protein. Biophys J 96:L10–L12. doi:10.1016/j.bpj.2008.10.004

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Lindenbach BD, Evans MJ, Syder AJ et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626. doi:10.1126/science.1114016

    CAS  PubMed  Google Scholar 

  33. Bassett SE, Brasky KM, Lanford RE (1998) Analysis of hepatitis C virus-inoculated chimpanzees reveals unexpected clinical profiles. J Virol 72:2589–2599

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Wakita T, Pietschmann T, Kato T et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796. doi:10.1038/nm1268

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Kolykhalov AA, Agapov EV, Blight KJ et al (1997) Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277:570–574

    CAS  PubMed  Google Scholar 

  36. Patton HM, Patel K, Behling C et al (2004) The impact of steatosis on disease progression and early and sustained treatment response in chronic hepatitis C patients. J Hepatol 40:484–490. doi:10.1016/j.jhep.2003.11.004

    PubMed  Google Scholar 

  37. Lohmann V, Körner F, Koch J et al (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113

    CAS  PubMed  Google Scholar 

  38. Blight KJ, Kolykhalov AA, Rice CM (2000) Efficient initiation of HCV RNA replication in cell culture. Science 290:1972–1974

    CAS  PubMed  Google Scholar 

  39. Kato T, Date T, Miyamoto M et al (2003) Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125:1808–1817

    CAS  PubMed  Google Scholar 

  40. Blight KJ, McKeating JA, Marcotrigiano J, Rice CM (2003) Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol 77:3181–3190

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Pietschmann T, Lohmann V, Kaul A et al (2002) Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol 76:4008–4021. doi:10.1128/JVI. 76.8.4008-4021.2002

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhong J, Gastaminza P, Cheng G et al (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci 102:9294–9299. doi:10.1073/pnas.0503596102

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Kato T, Matsumura T, Heller T et al (2007) Production of infectious hepatitis C virus of various genotypes in cell cultures. J Virol 81:4405–4411. doi:10.1128/JVI. 02334-06

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Yi M, Lemon SM (2009) Genotype 1a HCV (H77S) infection system. Methods Mol Biol 510:337–346

    CAS  PubMed  Google Scholar 

  45. Billerbeck E, de Jong Y, Dorner M et al (2013) Animal models for hepatitis C. Curr Top Microbiol Immunol 369:49–86. doi:10.1007/978-3-642-27340-7_3

    CAS  PubMed  Google Scholar 

  46. Chang K-S, Cai Z, Zhang C et al (2006) Replication of hepatitis C virus (HCV) RNA in mouse embryonic fibroblasts: protein kinase R (PKR)-dependent and PKR-independent mechanisms for controlling HCV RNA replication and mediating interferon activities. J Virol 80:7364–7374. doi:10.1128/JVI. 00586-06

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Lin L-T, Noyce RS, Pham TNQ et al (2010) Replication of subgenomic hepatitis C virus replicons in mouse fibroblasts is facilitated by deletion of interferon regulatory factor 3 and expression of liver-specific microRNA 122. J Virol 84:9170–9180. doi:10.1128/JVI. 00559-10

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Dorner M, Horwitz JA, Donovan BM et al (2013) Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501:237–241. doi:10.1038/nature12427

    CAS  PubMed  Google Scholar 

  49. Washburn ML, Bility MT, Zhang L et al (2011) A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140:1334–1344. doi:10.1053/j.gastro.2011.01.001

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Bitzegeio J, Bankwitz D, Hueging K et al (2010) Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors. PLoS Pathog 6:e1000978. doi:10.1371/journal.ppat.1000978

    PubMed Central  PubMed  Google Scholar 

  51. Tong Y, Zhu Y, Xia X et al (2011) Tupaia CD81, SR-BI, claudin-1, and occludin support hepatitis C virus infection. J Virol 85:2793–2802. doi:10.1128/JVI. 01818-10

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Amako Y, Tsukiyama-Kohara K, Katsume A et al (2010) Pathogenesis of hepatitis C virus infection in Tupaia belangeri. J Virol 84:303–311. doi:10.1128/JVI. 01448-09

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Hurtado-Nedelec M, Makni-Maalej K, Gougerot-Pocidalo M-A et al (2014) Assessment of priming of the human neutrophil respiratory burst. Methods Mol Biol 1124:405–412. doi:10.1007/978-1-62703-845-4_23

    CAS  PubMed  Google Scholar 

  54. Overstreet JM, Samarakoon R, Meldrum KK, Higgins PJ (2014) Redox control of p53 in the transcriptional regulation of TGF-β1 target genes through SMAD cooperativity. Cell Signal; 26(7):1427–1436. doi:10.1016/j.cellsig.2014.02.017

    CAS  PubMed  Google Scholar 

  55. Brandes RP, Weissmann N, Schröder K (2014) Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases. J Mol Cell Cardiol 73:70–79. doi:10.1016/j.yjmcc.2014.02.006

    CAS  PubMed  Google Scholar 

  56. Tandara L, Salamunic I (2012) Iron metabolism: current facts and future directions. Biochem Med 22:311–328

    CAS  Google Scholar 

  57. Miura K, Taura K, Kodama Y et al (2008) Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology 48:1420–1429. doi:10.1002/hep.22486

    CAS  PubMed  Google Scholar 

  58. Kato J, Kobune M, Nakamura T et al (2001) Normalization of elevated hepatic 8-hydroxy-2′-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res 61:8697–8702

    CAS  PubMed  Google Scholar 

  59. Hayashi H, Takikawa T, Nishimura N et al (1994) Improvement of serum aminotransferase levels after phlebotomy in patients with chronic active hepatitis C and excess hepatic iron. Am J Gastroenterol 89:986–988

    CAS  PubMed  Google Scholar 

  60. Yano M, Hayashi H, Wakusawa S et al (2002) Long term effects of phlebotomy on biochemical and histological parameters of chronic hepatitis C. Am J Gastroenterol 97:133–137. doi:10.1111/j.1572-0241.2002.05436.x

    CAS  PubMed  Google Scholar 

  61. Kato J, Miyanishi K, Kobune M et al (2007) Long-term phlebotomy with low-iron diet therapy lowers risk of development of hepatocellular carcinoma from chronic hepatitis C. J Gastroenterol 42:830–836. doi:10.1007/s00535-007-2095-z

    CAS  PubMed  Google Scholar 

  62. Kageyama F, Kobayashi Y, Kawasaki T et al (2000) Successful interferon therapy reverses enhanced hepatic iron accumulation and lipid peroxidation in chronic hepatitis C. Am J Gastroenterol 95:1041–1050. doi:10.1111/j.1572-0241.2000.01979.x

    CAS  PubMed  Google Scholar 

  63. Piccoli C, Scrima R, Quarato G et al (2007) Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress. Hepatology 46:58–65. doi:10.1002/hep.21679

    CAS  PubMed  Google Scholar 

  64. Deng L, Adachi T, Kitayama K et al (2008) Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. J Virol 82:10375–10385. doi:10.1128/JVI. 00395-08

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Boudreau HE, Emerson SU, Korzeniowska A et al (2009) Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor-dependent manner: a new contributor to HCV-induced oxidative stress. J Virol 83:12934–12946. doi:10.1128/JVI. 01059-09

    PubMed Central  CAS  PubMed  Google Scholar 

  66. De Mochel NSR, Seronello S, Wang SH et al (2010) Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 52:47–59. doi:10.1002/hep.23671

    PubMed Central  PubMed  Google Scholar 

  67. Wang T, Campbell RV, Yi MK et al (2010) Role of Hepatitis C virus core protein in viral-induced mitochondrial dysfunction. J Viral Hepat 17:784–793. doi:10.1111/j.1365-2893.2009.01238.x

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Valgimigli M, Valgimigli L, Trerè D et al (2002) Oxidative stress EPR measurement in human liver by radical-probe technique. Correlation with etiology, histology and cell proliferation. Free Radic Res 36:939–948

    CAS  PubMed  Google Scholar 

  69. Okuda M, Li K, Beard M et al (2002) Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366–375. doi:10.1053/gast.2002.30983

    CAS  PubMed  Google Scholar 

  70. Hara Y, Hino K, Okuda M et al (2006) Hepatitis C virus core protein inhibits deoxycholic acid-mediated apoptosis despite generating mitochondrial reactive oxygen species. J Gastroenterol 41:257–268. doi:10.1007/s00535-005-1738-1

    CAS  PubMed  Google Scholar 

  71. Li Y, Boehning DF, Qian T et al (2007) Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity. FASEB J 21:2474–2485. doi:10.1096/fj.06-7345com

    CAS  PubMed  Google Scholar 

  72. Korenaga M, Wang T, Li Y et al (2005) Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 280:37481–37488. doi:10.1074/jbc.M506412200

    CAS  PubMed  Google Scholar 

  73. Gaspers LD, Mémin E, Thomas AP (2012) Calcium-dependent physiologic and pathologic stimulus-metabolic response coupling in hepatocytes. Cell Calcium 52:93–102. doi:10.1016/j.ceca.2012.04.009

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Tsutsumi T, Matsuda M, Aizaki H et al (2009) Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperon, prohibition, in cells expressing hepatitis C virus core protein. Hepatology 50:378–386. doi:10.1002/hep.22998

    CAS  PubMed  Google Scholar 

  75. Nomura-Takigawa Y, Nagano-Fujii M, Deng L et al (2006) Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J Gen Virol 87:1935–1945. doi:10.1099/vir. 0.81701-0

    CAS  PubMed  Google Scholar 

  76. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189. doi:10.1038/nri1312

    CAS  PubMed  Google Scholar 

  77. Pollock JD, Williams DA, Gifford MA et al (1995) Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9:202–209. doi:10.1038/ng0295-202

    CAS  PubMed  Google Scholar 

  78. Bureau C (2001) Nonstructural 3 protein of hepatitis C virus triggers an oxidative burst in human monocytes via activation of NADPH oxidase. J Biol Chem 276:23077–23083. doi:10.1074/jbc.M100698200

    CAS  PubMed  Google Scholar 

  79. Thoren F (2004) A hepatitis C virus-encoded, nonstructural protein (NS3) triggers dysfunction and apoptosis in lymphocytes: role of NADPH oxidase-derived oxygen radicals. J Leukoc Biol 76:1180–1186. doi:10.1189/jlb.0704387

    CAS  PubMed  Google Scholar 

  80. Tacke RS, Tosello-Trampont A, Nguyen V et al (2011) Extracellular hepatitis C virus core protein activates STAT3 in human monocytes/macrophages/dendritic cells via an IL-6 autocrine pathway. J Biol Chem 286:10847–10855. doi:10.1074/jbc.M110.217653

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Corzo CA, Cotter MJ, Cheng P et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701. doi:10.4049/jimmunol.0900092

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Von Lohneysen K, Noack D, Wood MR et al (2009) Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization. Mol Cell Biol 30:961–975. doi:10.1128/MCB. 01393-09

    Google Scholar 

  83. Von Lohneysen K, Noack D, Hayes P et al (2012) Constitutive NADPH oxidase 4 activity resides in the composition of the B-loop and the penultimate C terminus. J Biol Chem 287:8737–8745. doi:10.1074/jbc.M111.332494

    Google Scholar 

  84. Goyal P, Weissmann N, Rose F et al (2005) Identification of novel Nox4 splice variants with impact on ROS levels in A549 cells. Biochem Biophys Res Commun 329:32–39. doi:10.1016/j.bbrc.2005.01.089

    CAS  PubMed  Google Scholar 

  85. Anilkumar N, Jose GS, Sawyer I et al (2013) A 28-kDa splice variant of NADPH oxidase-4 is nuclear-localized and involved in redox signaling in vascular cells. Arterioscler Thromb Vasc Biol 33:e104–e112. doi:10.1161/ATVBAHA.112.300956

    CAS  PubMed  Google Scholar 

  86. Spencer NY, Yan Z, Boudreau RL et al (2011) Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4. J Biol Chem 286:8977–8987. doi:10.1074/jbc.M110.193821

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Otani K, Korenaga M, Beard MR et al (2005) Hepatitis C virus core protein, cytochrome P450 2E1, and alcohol produce combined mitochondrial injury and cytotoxicity in hepatoma cells. Gastroenterology 128:96–107

    CAS  PubMed  Google Scholar 

  88. Gochee PA, Jonsson JR, Clouston AD et al (2003) Steatosis in chronic hepatitis C: association with increased messenger RNA expression of collagen I, tumor necrosis factor-alpha and cytochrome P450 2E1. J Gastroenterol Hepatol 18:386–392

    CAS  PubMed  Google Scholar 

  89. Higgs MR, Lerat H, Pawlotsky J-M (2013) Hepatitis C virus-induced activation of β-catenin promotes c-Myc expression and a cascade of pro-carcinogenetic events. Oncogene 32:4683–4693. doi:10.1038/onc.2012.484

    CAS  PubMed  Google Scholar 

  90. Geller DA, Lowenstein CJ, Shapiro RA et al (1993) Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A 90:3491–3495

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Xie QW, Cho HJ, Calaycay J et al (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228

    CAS  PubMed  Google Scholar 

  92. Machida K, Cheng KT-H, Sung VM-H et al (2004) Hepatitis C virus infection activates the immunologic (type II) isoform of nitric oxide synthase and thereby enhances DNA damage and mutations of cellular genes. J Virol 78:8835–8843. doi:10.1128/JVI. 78.16.8835-8843.2004

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Majano PL, García-Monzón C, López-Cabrera M et al (1998) Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation. J Clin Invest 101:1343–1352. doi:10.1172/JCI774

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Kane JM 3rd, Shears LL 2nd, Hierholzer C et al (1997) Chronic hepatitis C virus infection in humans: induction of hepatic nitric oxide synthase and proposed mechanisms for carcinogenesis. J Surg Res 69:321–324. doi:10.1006/jsre.1997.5057

    CAS  PubMed  Google Scholar 

  95. Vodovotz Y, Kim PKM, Bagci EZ et al (2004) Inflammatory modulation of hepatocyte apoptosis by nitric oxide: in vivo, in vitro, and in silico studies. Curr Mol Med 4:753–762

    CAS  PubMed  Google Scholar 

  96. Machida K, Tsukamoto H, Liu J-C et al (2010) c-Jun mediates hepatitis C virus hepatocarcinogenesis through signal transducer and activator of transcription 3 and nitric oxide-dependent impairment of oxidative DNA repair. Hepatology 52:480–492. doi:10.1002/hep.23697

    PubMed Central  CAS  PubMed  Google Scholar 

  97. García-Monzón C, Majano PL, Zubia I et al (2000) Intrahepatic accumulation of nitrotyrosine in chronic viral hepatitis is associated with histological severity of liver disease. J Hepatol 32:331–338

    PubMed  Google Scholar 

  98. El-Kannishy G, Arafa M, Abdelaal I et al (2012) Persistent oxidative stress in patients with chronic active hepatitis-C infection after antiviral therapy failure. Saudi J Gastroenterol 18:375–379. doi:10.4103/1319-3767.103429

    PubMed Central  PubMed  Google Scholar 

  99. Abdalla MY, Ahmad IM, Spitz DR et al (2005) Hepatitis C virus-core and non structural proteins lead to different effects on cellular antioxidant defenses. J Med Virol 76:489–497. doi:10.1002/jmv.20388

    CAS  PubMed  Google Scholar 

  100. Levent G, Ali A, Ahmet A et al (2006) Oxidative stress and antioxidant defense in patients with chronic hepatitis C patients before and after pegylated interferon alfa-2b plus ribavirin therapy. J Transl Med 4:25. doi:10.1186/1479-5876-4-25

    PubMed Central  PubMed  Google Scholar 

  101. Carvajal-Yepes M, Himmelsbach K, Schaedler S et al (2011) Hepatitis C virus impairs the induction of cytoprotective Nrf2 target genes by delocalization of small maf proteins. J Biol Chem 286:8941–8951. doi:10.1074/jbc.M110.186684

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Burdette D, Olivarez M, Waris G (2010) Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. J Gen Virol 91:681–690. doi:10.1099/vir. 0.014340-0

    CAS  PubMed  Google Scholar 

  103. Choi J (2012) Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 52:1135–1150. doi:10.1016/j.freeradbiomed.2012.01.008

    CAS  PubMed  Google Scholar 

  104. Tamai T, Uto H, Takami Y et al (2011) Serum manganese superoxide dismutase and thioredoxin are potential prognostic markers for hepatitis C virus-related hepatocellular carcinoma. World J Gastroenterol 17:4890–4898. doi:10.3748/wjg.v17.i44.4890

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Marotta F, Chui DH, Jain S et al (2011) Effect of a fermented nutraceutical on thioredoxin level and TNF-alpha signalling in cirrhotic patients. J Biol Regul Homeost Agents 25:37–45

    CAS  PubMed  Google Scholar 

  106. Mitsuyoshi H, Itoh Y, Sumida Y et al (2008) Evidence of oxidative stress as a cofactor in the development of insulin resistance in patients with chronic hepatitis C. Hepatol Res 38:348–353. doi:10.1111/j.1872-034X.2007.00280.x

    CAS  PubMed  Google Scholar 

  107. Yahya RS, Ghanem OH, Foyouh A-AA et al (2013) Role of interleukin-8 and oxidative stress in patients with hepatocellular carcinoma. Clin Lab 59:969–976

    CAS  PubMed  Google Scholar 

  108. Ramesh S, Sanyal AJ (2004) Hepatitis C and nonalcoholic fatty liver disease. Semin Liver Dis 24:399–413. doi:10.1055/s-2004-860869

    CAS  PubMed  Google Scholar 

  109. Lonardo A, Loria P, Adinolfi LE et al (2006) Hepatitis C and steatosis: a reappraisal. J Viral Hepat 13:73–80. doi:10.1111/j.1365-2893.2005.00669.x

    CAS  PubMed  Google Scholar 

  110. Hui JM, Kench J, Farrell GC et al (2002) Genotype-specific mechanisms for hepatic steatosis in chronic hepatitis C infection. J Gastroenterol Hepatol 17:873–881

    PubMed  Google Scholar 

  111. Ohata K, Hamasaki K, Toriyama K et al (2003) Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer 97:3036–3043. doi:10.1002/cncr.11427

    PubMed  Google Scholar 

  112. Leandro G, Mangia A, Hui J et al (2006) Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology 130:1636–1642. doi:10.1053/j.gastro.2006.03.014

    PubMed  Google Scholar 

  113. Pekow JR, Bhan AK, Zheng H, Chung RT (2007) Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer 109:2490–2496. doi:10.1002/cncr.22701

    PubMed  Google Scholar 

  114. Poynard T (2003) Effect of treatment with peginterferon or interferon alfa-2b and ribavirin on steatosis in patients infected with hepatitis C. Hepatology 38:75–85. doi:10.1053/jhep.2003.50267

    CAS  PubMed  Google Scholar 

  115. Westin J, Lagging M, Dhillon AP et al (2007) Impact of hepatic steatosis on viral kinetics and treatment outcome during antiviral treatment of chronic HCV infection. J Viral Hepat 14:29–35. doi:10.1111/j.1365-2893.2006.00777.x

    CAS  PubMed  Google Scholar 

  116. Kim KH, Hong SP, Kim K et al (2007) HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARgamma. Biochem Biophys Res Commun 355:883–888. doi:10.1016/j.bbrc.2007.02.044

    CAS  PubMed  Google Scholar 

  117. Fujino T, Nakamuta M, Yada R et al (2010) Expression profile of lipid metabolism-associated genes in hepatitis C virus-infected human liver: Lipid metabolism in HCV-infected liver. Hepatol Res 40:923–929. doi:10.1111/j.1872-034X.2010.00700.x

    CAS  PubMed  Google Scholar 

  118. Waris G, Felmlee DJ, Negro F, Siddiqui A (2007) Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 81:8122–8130. doi:10.1128/JVI. 00125-07

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Oem J-K, Jackel-Cram C, Li Y-P et al (2008) Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2. J Gen Virol 89:1225–1230. doi:10.1099/vir. 0.83491-0

    CAS  PubMed  Google Scholar 

  120. Harris C, Herker E, Farese RV Jr, Ott M (2011) Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J Biol Chem 286:42615–42625. doi:10.1074/jbc.M111.285148

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Lerat H, Honda M, Beard M et al (2002) Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis c virus. Gastroenterology 122:352–365. doi:10.1053/gast.2002.31001

    CAS  PubMed  Google Scholar 

  122. Naas T (2005) Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86:2185–2196. doi:10.1099/vir. 0.80969-0

    CAS  PubMed  Google Scholar 

  123. Moriishi K, Mochizuki R, Moriya K et al (2007) Critical role of PA28 in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci 104:1661–1666. doi:10.1073/pnas.0607312104

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Tanaka N, Moriya K, Kiyosawa K et al (2008) PPARα activation is essential for HCV core protein–induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest. doi:10.1172/JCI33594

    PubMed Central  PubMed  Google Scholar 

  125. Wang A-G, Lee D-S, Moon H-B et al (2009) Non-structural 5A protein of hepatitis C virus induces a range of liver pathology in transgenic mice. J Pathol 219:253–262. doi:10.1002/path.2592

    CAS  PubMed  Google Scholar 

  126. Su AI, Pezacki JP, Wodicka L et al (2002) Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A 99:15669–15674. doi:10.1073/pnas.202608199

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Bigger CB, Guerra B, Brasky KM et al (2004) Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. J Virol 78:13779–13792. doi:10.1128/JVI. 78.24.13779-13792.2004

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Kaddai V, Negro F (2011) Current understanding of insulin resistance in hepatitis C. Expert Rev Gastroenterol Hepatol 5:503–516. doi:10.1586/egh.11.43

    CAS  PubMed  Google Scholar 

  129. Farinati F, Cardin R, De Maria N et al (1995) Iron storage, lipid peroxidation and glutathione turnover in chronic anti-HCV positive hepatitis. J Hepatol 22:449–456. doi:10.1016/0168-8278(95)80108-1

    CAS  PubMed  Google Scholar 

  130. Macdonald GA, Bridle KR, Ward PJ et al (2001) Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol 16:599–606. doi:10.1046/j.1440-1746.2001.02445.x

    CAS  PubMed  Google Scholar 

  131. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218. doi:10.1172/JCI24282

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Jiang JX, Venugopal S, Serizawa N et al (2010) Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 139:1375–1384. doi:10.1053/j.gastro.2010.05.074

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Paik Y-H, Iwaisako K, Seki E et al (2011) The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology 53:1730–1741. doi:10.1002/hep.24281

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Calvisi DF, Pascale RM, Feo F (2007) Dissection of signal transduction pathways as a tool for the development of targeted therapies of hepatocellular carcinoma. Rev Recent Clin Trials 2:217–236

    CAS  PubMed  Google Scholar 

  135. Poli G (2000) Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med 21:49–98

    CAS  PubMed  Google Scholar 

  136. Sánchez-Valle V, Chávez-Tapia NC, Uribe M, Méndez-Sánchez N (2012) Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 19:4850–4860

    PubMed  Google Scholar 

  137. Rigamonti C, Andorno S, Maduli E et al (2002) Iron, hepatic stellate cells and fibrosis in chronic hepatitis C. Eur J Clin Invest 32(Suppl 1):28–35

    PubMed  Google Scholar 

  138. Nieto N, Greenwel P, Friedman SL et al (2000) Ethanol and arachidonic acid increase alpha 2(I) collagen expression in rat hepatic stellate cells overexpressing cytochrome P450 2E1. Role of H2O2 and cyclooxygenase-2. J Biol Chem 275:20136–20145. doi:10.1074/jbc.M001422200

    CAS  PubMed  Google Scholar 

  139. Nieto N (2007) Ethanol and fish oil induce NFkappaB transactivation of the collagen alpha2(I) promoter through lipid peroxidation-driven activation of the PKC-PI3K-Akt pathway. Hepatology 45:1433–1445. doi:10.1002/hep.21659

    CAS  PubMed  Google Scholar 

  140. Lin Q, Fang D, Hou X et al (2011) HCV peptide (C5A), an amphipathic α-helical peptide of hepatitis virus C, is an activator of N-formyl peptide receptor in human phagocytes. J Immunol 186:2087–2094. doi:10.4049/jimmunol.1002340

    CAS  PubMed  Google Scholar 

  141. Canbay A, Friedman S, Gores GJ (2004) Apoptosis: the nexus of liver injury and fibrosis. Hepatology 39:273–278. doi:10.1002/hep.20051

    PubMed  Google Scholar 

  142. Canbay A, Higuchi H, Bronk SF et al (2002) Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 123:1323–1330

    CAS  PubMed  Google Scholar 

  143. Canbay A, Feldstein AE, Higuchi H et al (2003) Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38:1188–1198. doi:10.1053/jhep.2003.50472

    CAS  PubMed  Google Scholar 

  144. Pianko S, Patella S, Ostapowicz G et al (2001) Fas-mediated hepatocyte apoptosis is increased by hepatitis C virus infection and alcohol consumption, and may be associated with hepatic fibrosis: mechanisms of liver cell injury in chronic hepatitis C virus infection. J Viral Hepat 8:406–413

    CAS  PubMed  Google Scholar 

  145. Mateu G, Donis RO, Wakita T et al (2008) Intragenotypic JFH1 based recombinant hepatitis C virus produces high levels of infectious particles but causes increased cell death. Virology 376:397–407. doi:10.1016/j.virol.2008.03.027

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Walters K-A, Syder AJ, Lederer SL et al (2009) Genomic analysis reveals a potential role for cell cycle perturbation in HCV-mediated apoptosis of cultured hepatocytes. PLoS Pathog 5:e1000269. doi:10.1371/journal.ppat.1000269

    PubMed Central  PubMed  Google Scholar 

  147. Joyce MA, Walters K-A, Lamb S-E et al (2009) HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog 5:e1000291. doi:10.1371/journal.ppat.1000291

    PubMed Central  PubMed  Google Scholar 

  148. Hiramatsu N, Hayashi N, Katayama K et al (1994) Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology 19:1354–1359. doi:10.1002/hep.1840190606

    CAS  PubMed  Google Scholar 

  149. Gieseler RK, Marquitan G, Schlattjan M et al (2011) Hepatocyte apoptotic bodies encasing nonstructural HCV proteins amplify hepatic stellate cell activation: implications for chronic hepatitis C: HCV-positive apoptotic bodies amplify hepatic stellate cell activation. J Viral Hepat 18:760–767. doi:10.1111/j.1365-2893.2010.01362.x

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Inagaki Y, Okazaki I (2007) Emerging insights into transforming growth factor smad signal in hepatic fibrogenesis. Gut 56:284–292. doi:10.1136/gut.2005.088690

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O et al (2010) Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology 52:966–974. doi:10.1002/hep.23769

    CAS  PubMed  Google Scholar 

  152. Jiang JX, Chen X, Serizawa N et al (2012) Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med 53:289–296. doi:10.1016/j.freeradbiomed.2012.05.007

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Hu T, Ramachandrarao SP, Siva S et al (2005) Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. Am J Physiol Renal Physiol 289:F816–F825. doi:10.1152/ajprenal.00024.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Hecker L, Vittal R, Jones T et al (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15:1077–1081. doi:10.1038/nm.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Liu R-M, Choi J, Wu J-H et al (2010) Oxidative modification of nuclear mitogen-activated protein kinase phosphatase 1 is involved in transforming growth factor beta1-induced expression of plasminogen activator inhibitor 1 in fibroblasts. J Biol Chem 285:16239–16247. doi:10.1074/jbc.M110.111732

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Carmona-Cuenca I, Roncero C, Sancho P et al (2008) Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol 49:965–976. doi:10.1016/j.jhep.2008.07.021

    CAS  PubMed  Google Scholar 

  157. Sancho P, Bertran E, Caja L et al (2009) The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-beta-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms. Biochim Biophys Acta 1793:253–263. doi:10.1016/j.bbamcr.2008.09.003

    CAS  PubMed  Google Scholar 

  158. Murillo MM, Carmona-Cuenca I, Del Castillo G et al (2007) Activation of NADPH oxidase by transforming growth factor-beta in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor-kappaB-dependent mechanism. Biochem J 405:251–259. doi:10.1042/BJ20061846

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Sancho P, Mainez J, Crosas-Molist E et al (2012) NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS One 7:e45285. doi:10.1371/journal.pone.0045285

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Nelson DR, Gonzalez-Peralta RP, Qian K et al (1997) Transforming growth factor-beta 1 in chronic hepatitis C. J Viral Hepat 4:29–35

    CAS  PubMed  Google Scholar 

  161. Lin W, Wu G, Li S et al (2011) HIV and HCV cooperatively promote hepatic fibrogenesis via induction of reactive oxygen species and NFkappaB. J Biol Chem 286:2665–2674. doi:10.1074/jbc.M110.168286

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Bataller R, Schwabe RF, Choi YH et al (2003) NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 112:1383–1394. doi:10.1172/JCI18212

    PubMed Central  CAS  PubMed  Google Scholar 

  163. De Minicis S, Seki E, Paik Y-H et al (2010) Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology 52:1420–1430. doi:10.1002/hep.23804

    PubMed Central  PubMed  Google Scholar 

  164. Aoyama T, Paik Y-H, Watanabe S et al (2012) Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56:2316–2327. doi:10.1002/hep.25938

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Emerit J, Samuel D, Pavio N (2006) Cu-Zn super oxide dismutase as a potential antifibrotic drug for hepatitis C related fibrosis. Biomed Pharmacother 60:1–4. doi:10.1016/j.biopha.2005.09.002

    CAS  PubMed  Google Scholar 

  166. Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol Mech Dis 6:425–456. doi:10.1146/annurev-pathol-011110-130246

    CAS  Google Scholar 

  167. Capone F, Costantini S, Guerriero E et al (2010) Serum cytokine levels in patients with hepatocellular carcinoma. Eur Cytokine Netw 21:99–104. doi:10.1684/ecn.2010.0192

    CAS  PubMed  Google Scholar 

  168. Jiang JX, Chen X, Fukada H et al (2013) Advanced glycation endproducts induce fibrogenic activity in nonalcoholic steatohepatitis by modulating TNF-α-converting enzyme activity in mice. Hepatology 58:1339–1348. doi:10.1002/hep.26491

    PubMed  Google Scholar 

  169. Kastl L, Sauer SW, Ruppert T et al (2014) TNF-α mediates mitochondrial uncoupling and enhances ROS-dependent cell migration via NF-κB activation in liver cells. FEBS Lett 588:175–183. doi:10.1016/j.febslet.2013.11.033

    CAS  PubMed  Google Scholar 

  170. Donato F, Boffetta P, Puoti M (1998) A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int J Cancer 75:347–354. doi:10.1002/(SICI)1097-0215(19980130)75:3<347::AID-IJC4>3.0.CO;2-2

    CAS  PubMed  Google Scholar 

  171. Davis G (2003) Projecting future complications of chronic hepatitis C in the United States. Liver Transpl 9:331–338. doi:10.1053/jlts.2003.50073

    PubMed  Google Scholar 

  172. Elchuri S, Oberley TD, Qi W et al (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380. doi:10.1038/sj.onc.1208207

    CAS  PubMed  Google Scholar 

  173. Xu Z, Chen L, Leung L et al (2005) Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proc Natl Acad Sci U S A 102:4120–4125. doi:10.1073/pnas.0500660102

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Farinati F, Cardin R, Degan P et al (1999) Oxidative DNA damage in circulating leukocytes occurs as an early event in chronic HCV infection. Free Radic Biol Med 27:1284–1291

    CAS  PubMed  Google Scholar 

  175. Furutani T, Hino K, Okuda M et al (2006) Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 130:2087–2098. doi:10.1053/j.gastro.2006.02.060

    CAS  PubMed  Google Scholar 

  176. Nishina S, Korenaga M, Hidaka I et al (2010) Hepatitis C virus protein and iron overload induce hepatic steatosis through the unfolded protein response in mice. Liver Int 30:683–692. doi:10.1111/j.1478-3231.2010.02210.x

    CAS  PubMed  Google Scholar 

  177. Burney S, Caulfield JL, Niles JC et al (1999) The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 424:37–49. doi:10.1016/S0027-5107(99)00006-8

    CAS  PubMed  Google Scholar 

  178. Valko M, Izakovic M, Mazur M et al (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    CAS  PubMed  Google Scholar 

  179. deRojas-Walker T, Tamir S, Ji H et al (1995) Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem Res Toxicol 8:473–477

    CAS  PubMed  Google Scholar 

  180. Machida K, McNamara G, Cheng KT-H et al (1950) (2010) Hepatitis C virus inhibits DNA damage repair through reactive oxygen and nitrogen species and by interfering with the ATM-NBS1/Mre11/Rad50 DNA repair pathway in monocytes and hepatocytes. J Immunol 185:6985–6998. doi:10.4049/jimmunol.1000618

    Google Scholar 

  181. Machida K, Cheng KT-H, Lai C-K et al (2006) Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80:7199–7207. doi:10.1128/JVI. 00321-06

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844. doi:10.1021/tx9501445

    CAS  PubMed  Google Scholar 

  183. Hussain SP, Schwank J, Staib F et al (2007) TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26:2166–2176. doi:10.1038/sj.onc.1210279

    CAS  PubMed  Google Scholar 

  184. Edamoto Y, Hara A, Biernat W et al (2003) Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int J Cancer 106:334–341. doi:10.1002/ijc.11254

    CAS  PubMed  Google Scholar 

  185. Knudsen ES, Knudsen KE (2008) Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 8:714–724. doi:10.1038/nrc2401

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Schwarz KB, Kew M, Klein A et al (2001) Increased hepatic oxidative DNA damage in patients with hepatocellular carcinoma. Dig Dis Sci 46:2173–2178

    CAS  PubMed  Google Scholar 

  187. Matsumoto K (2003) Immunohistochemical study of the relationship between 8-hydroxy-2′-deoxyguanosine levels in noncancerous region and postoperative recurrence of hepatocellular carcinoma in remnant liver. Hepatol Res 25:435–441. doi:10.1016/S1386-6346(02)00313-3

    CAS  PubMed  Google Scholar 

  188. Machida K, Cheng KT-N, Sung VM-H et al (2004) Hepatitis C virus induces a mutator phenotype: Enhanced mutations of immunoglobulin and protooncogenes. Proc Natl Acad Sci 101:4262–4267. doi:10.1073/pnas.0303971101

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Jung SW, Park NH, Shin JW et al (2012) Polymorphisms of DNA repair genes in Korean hepatocellular carcinoma patients with chronic hepatitis B: possible implications on survival. J Hepatol 57:621–627. doi:10.1016/j.jhep.2012.04.039

    CAS  PubMed  Google Scholar 

  190. Kershaw RM, Hodges NJ (2012) Repair of oxidative DNA damage is delayed in the Ser326Cys polymorphic variant of the base excision repair protein OGG1. Mutagenesis 27:501–510. doi:10.1093/mutage/ges012

    CAS  PubMed  Google Scholar 

  191. Jaiswal M, LaRusso NF, Nishioka N et al (2001) Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res 61:6388–6393

    CAS  PubMed  Google Scholar 

  192. Bartsch H, Nair J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 391:499–510. doi:10.1007/s00423-006-0073-1

    PubMed  Google Scholar 

  193. Teufelhofer O, Parzefall W, Kainzbauer E et al (2005) Superoxide generation from Kupffer cells contributes to hepatocarcinogenesis: studies on NADPH oxidase knockout mice. Carcinogenesis 26:319–329. doi:10.1093/carcin/bgh320

    CAS  PubMed  Google Scholar 

  194. Vendemiale G, Grattagliano I, Portincasa P et al (2001) Oxidative stress in symptom-free HCV carriers: relation with ALT flare-up. Eur J Clin Invest 31:54–63. doi:10.1046/j.1365-2362.2001.00747.x

    CAS  PubMed  Google Scholar 

  195. Moe KT, Aulia S, Jiang F et al (2006) Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells. J Cell Mol Med 10:231–239

    CAS  PubMed  Google Scholar 

  196. Kim Y-S, Morgan MJ, Choksi S, Liu Z-G (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26:675–687. doi:10.1016/j.molcel.2007.04.021

    CAS  PubMed  Google Scholar 

  197. Manea A, Manea SA, Gafencu AV et al (2008) AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit. Arterioscler Thromb Vasc Biol 28:878–885. doi:10.1161/ATVBAHA.108.163592

    CAS  PubMed  Google Scholar 

  198. Xia L, Mo P, Huang W et al (2012) The TNF-α/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis 33:2250–2259. doi:10.1093/carcin/bgs249

    CAS  PubMed  Google Scholar 

  199. Sun H-C, Li M, Lu J-L et al (2011) Overexpression of Forkhead box M1 protein associates with aggressive tumor features and poor prognosis of hepatocellular carcinoma. Oncol Rep 25:1533–1539. doi:10.3892/or.2011.1230

    PubMed  Google Scholar 

  200. Sun H, Teng M, Liu J et al (2011) FOXM1 expression predicts the prognosis in hepatocellular carcinoma patients after orthotopic liver transplantation combined with the Milan criteria. Cancer Lett 306:214–222. doi:10.1016/j.canlet.2011.03.009

    CAS  PubMed  Google Scholar 

  201. Kalinichenko VV (2004) Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev 18:830–850. doi:10.1101/gad.1200704

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Gusarova GA, Wang I-C, Major ML et al (2007) A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J Clin Invest 117:99–111. doi:10.1172/JCI27527

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Caradonna L, Mastronardi ML, Magrone T et al (2002) Biological and clinical significance of endotoxemia in the course of hepatitis C virus infection. Curr Pharm Des 8:995–1005

    CAS  PubMed  Google Scholar 

  204. Vespasiani-Gentilucci U, Carotti S, Onetti-Muda A et al (2012) Toll-like receptor-4 expression by hepatic progenitor cells and biliary epithelial cells in HCV-related chronic liver disease. Mod Pathol 25:576–589. doi:10.1038/modpathol.2011.197

    CAS  PubMed  Google Scholar 

  205. Brownell J, Polyak SJ (2013) Molecular pathways: hepatitis C virus, CXCL10, and the inflammatory road to liver cancer. Clin Cancer Res 19:1347–1352. doi:10.1158/1078-0432.CCR-12-0928

    PubMed Central  CAS  PubMed  Google Scholar 

  206. Dapito DH, Mencin A, Gwak G-Y et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21:504–516. doi:10.1016/j.ccr.2012.02.007

    PubMed Central  CAS  PubMed  Google Scholar 

  207. Yu L-X, Yan H-X, Liu Q et al (2010) Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52:1322–1333. doi:10.1002/hep.23845

    CAS  PubMed  Google Scholar 

  208. Szabo G, Wands JR, Eken A et al (2010) Alcohol and hepatitis C virus–interactions in immune dysfunctions and liver damage. Alcohol Clin Exp Res 34:1675–1686. doi:10.1111/j.1530-0277.2010.01255.x

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Machida K, Tsukamoto H, Mkrtchyan H et al (2009) Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl Acad Sci U S A 106:1548–1553. doi:10.1073/pnas.0807390106

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Agúndez JA, García-Martín E, Devesa MJ et al (2012) Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology 82:35–40. doi:10.1159/000335606

    PubMed  Google Scholar 

  211. Maitra U, Singh N, Gan L et al (2009) IRAK-1 contributes to lipopolysaccharide-induced reactive oxygen species generation in macrophages by inducing NOX-1 transcription and Rac1 activation and suppressing the expression of antioxidative enzymes. J Biol Chem 284:35403–35411. doi:10.1074/jbc.M109.059501

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Kim J-S, Yeo S, Shin D-G et al (2010) Glycogen synthase kinase 3beta and beta-catenin pathway is involved in toll-like receptor 4-mediated NADPH oxidase 1 expression in macrophages. FEBS J 277:2830–2837. doi:10.1111/j.1742-4658.2010.07700.x

    CAS  PubMed  Google Scholar 

  213. Park HS, Jung HY, Park EY et al (2004) Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 173:3589–3593

    CAS  PubMed  Google Scholar 

  214. Chiang E, Dang O, Anderson K et al (2006) Cutting edge: apoptosis-regulating signal kinase 1 is required for reactive oxygen species-mediated activation of IFN regulatory factor 3 by lipopolysaccharide. J Immunol 176:5720–5724

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Park HS, Chun JN, Jung HY et al (2006) Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 72:447–455. doi:10.1016/j.cardiores.2006.09.012

    CAS  PubMed  Google Scholar 

  216. McCullough AJ (2011) Epidemiology of the metabolic syndrome in the USA: the metabolic syndrome. J Dig Dis 12:333–340. doi:10.1111/j.1751-2980.2010.00469.x

    PubMed  Google Scholar 

  217. Alberti KGMM, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645. doi:10.1161/CIRCULATIONAHA.109.192644

    CAS  PubMed  Google Scholar 

  218. Williams I (1999) Epidemiology of hepatitis C in the United States. Am J Med 107:2S–9S

    CAS  PubMed  Google Scholar 

  219. Mehta SH (2000) Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med 133:592. doi:10.7326/0003-4819-133-8-200010170-00009

    CAS  PubMed  Google Scholar 

  220. Sangiorgio L, Attardo T, Gangemi R et al (2000) Increased frequency of HCV and HBV infection in type 2 diabetic patients. Diabetes Res Clin Pract 48:147–151

    CAS  PubMed  Google Scholar 

  221. Moucari R, Asselah T, Cazals–Hatem D et al (2008) Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis. Gastroenterology 134:416–423. doi:10.1053/j.gastro.2007.11.010

    CAS  PubMed  Google Scholar 

  222. Moucari R, Asselah T, Paradis V et al (2007) Insulin resistance in 424 chronic hepatitis C patients: association with HCV replication and advanced fibrosis. J Hepatol 46:S11. doi:10.1016/S0168-8278(07)61619-5

    Google Scholar 

  223. Romero-Gómez M, Del Mar VM, Andrade RJ et al (2005) Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology 128:636–641

    PubMed  Google Scholar 

  224. Deng L, Shoji I, Ogawa W et al (2011) Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol 85:8556–8568. doi:10.1128/JVI. 00146-11

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Rotter V (2003) Interleukin-6 (IL-6) induces insulin resistance in 3T3–L1 adipocytes and is, like IL-8 and tumor necrosis factor-, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278:45777–45784. doi:10.1074/jbc.M301977200

    CAS  PubMed  Google Scholar 

  226. Borst SE (2004) The role of TNF-α in insulin resistance. Endocrine 23:177–182. doi:10.1385/ENDO:23:2-3:177

    CAS  PubMed  Google Scholar 

  227. Evans JL, Maddux BA, Goldfine ID (2005) The molecular basis for oxidative stress-induced insulin resistance. Antioxidants Redox Signal 7:1040–1052. doi:10.1089/ars.2005.7.1040

    CAS  Google Scholar 

  228. Ferri C, Greco F, Longombardo G et al (1991) Association between hepatitis C virus and mixed cryoglobulinemia. Clin Exp Rheumatol 9:621–624

    CAS  PubMed  Google Scholar 

  229. Zignego AL, Ferri C, Giannini C et al (1997) Hepatitis C virus infection in mixed cryoglobulinemia and B-cell non-Hodgkin’s lymphoma: evidence for a pathogenetic role. Arch Virol 142:545–555

    CAS  PubMed  Google Scholar 

  230. Conca P, Tarantino G (2009) Hepatitis C virus lymphotropism and peculiar immunological phenotype: effects on natural history and antiviral therapy. World J Gastroenterol 15:2305–2308

    PubMed Central  CAS  PubMed  Google Scholar 

  231. Seronello S, Ito C, Wakita T, Choi J (2010) Ethanol enhances hepatitis C virus replication through lipid metabolism and elevated NADH/NAD+. J Biol Chem 285:845–854. doi:10.1074/jbc.M109.045740

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Choi J, Lee KJ, Zheng Y et al (2004) Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 39:81–89. doi:10.1002/hep.20001

    CAS  PubMed  Google Scholar 

  233. Choi J, Forman HJ, Ou J et al (2006) Redox modulation of the hepatitis C virus replication complex is calcium dependent. Free Radic Biol Med 41:1488–1498. doi:10.1016/j.freeradbiomed.2006.08.008

    CAS  PubMed  Google Scholar 

  234. Huang H, Chen Y, Ye J (2007) Inhibition of hepatitis C virus replication by peroxidation of arachidonate and restoration by vitamin E. Proc Natl Acad Sci U S A 104:18666–18670. doi:10.1073/pnas.0708423104

    PubMed Central  CAS  PubMed  Google Scholar 

  235. Kuroki M, Ariumi Y, Ikeda M et al (2009) Arsenic trioxide inhibits hepatitis C virus RNA replication through modulation of the glutathione redox system and oxidative stress. J Virol 83:2338–2348. doi:10.1128/JVI. 01840-08

    PubMed Central  CAS  PubMed  Google Scholar 

  236. Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187

    PubMed Central  CAS  PubMed  Google Scholar 

  237. Seronello S, Sheikh MY, Choi J (2007) Redox regulation of hepatitis C in nonalcoholic and alcoholic liver. Free Radic Biol Med 43:869–882. doi:10.1016/j.freeradbiomed.2007.05.036

    CAS  PubMed  Google Scholar 

  238. Sata M, Fukuizumi K, Uchimura Y et al (1996) Hepatitis C virus infection in patients with clinically diagnosed alcoholic liver diseases. J Viral Hepat 3:143–148

    CAS  PubMed  Google Scholar 

  239. Pessione F, Degos F, Marcellin P et al (1998) Effect of alcohol consumption on serum hepatitis C virus RNA and histological lesions in chronic hepatitis C. Hepatology 27:1717–1722. doi:10.1002/hep.510270635

    CAS  PubMed  Google Scholar 

  240. Romero-Gómez M, Grande L, Nogales MC et al (2001) Intrahepatic hepatitis C virus replication is increased in patients with regular alcohol consumption. Dig Liver Dis 33:698–702

    PubMed  Google Scholar 

  241. Carrière M, Rosenberg AR, Conti F et al (2006) Low density lipoprotein receptor transcripts correlates with liver hepatitis C virus RNA in patients with alcohol consumption. J Viral Hepat 13:633–642. doi:10.1111/j.1365-2893.2006.00737.x

    PubMed  Google Scholar 

  242. Cromie SL, Jenkins PJ, Bowden DS, Dudley FJ (1996) Chronic hepatitis C: effect of alcohol on hepatitic activity and viral titre. J Hepatol 25:821–826

    CAS  PubMed  Google Scholar 

  243. Zhang T, Li Y, Lai J-P et al (2003) Alcohol potentiates hepatitis C virus replicon expression. Hepatology 38:57–65. doi:10.1053/jhep.2003.50295

    CAS  PubMed  Google Scholar 

  244. Trujillo-Murillo K, Alvarez-Martínez O, Garza-Rodríguez L et al (2007) Additive effect of ethanol and HCV subgenomic replicon expression on COX-2 protein levels and activity. J Viral Hepat 14:608–617. doi:10.1111/j.1365-2893.2006.00837.x

    CAS  PubMed  Google Scholar 

  245. Hou W, Bukong TN, Kodys K, Szabo G (2013) Alcohol facilitates HCV RNA replication Via up-regulation of miR-122 expression and inhibition of cyclin G1 in human hepatoma cells. Alcohol Clin Exp Res 37:599–608. doi:10.1111/acer.12005

    PubMed Central  CAS  PubMed  Google Scholar 

  246. Halfon P, Locarnini S (2011) Hepatitis C virus resistance to protease inhibitors. J Hepatol 55:192–206. doi:10.1016/j.jhep.2011.01.011

    CAS  PubMed  Google Scholar 

  247. Fridell RA, Qiu D, Wang C et al (2010) Resistance analysis of the hepatitis C virus NS5A inhibitor BMS-790052 in an in vitro replicon system. Antimicrob Agents Chemother 54:3641–3650. doi:10.1128/AAC. 00556-10

    PubMed Central  CAS  PubMed  Google Scholar 

  248. Scheel TKH, Gottwein JM, Mikkelsen LS et al (2011) Recombinant HCV variants with NS5A from genotypes 1–7 have different sensitivities to an NS5A inhibitor but not interferon-α. Gastroenterology 140:1032–1042. doi:10.1053/j.gastro.2010.11.036, e6

    CAS  PubMed  Google Scholar 

  249. Sun J-H, O’Boyle DR II, Zhang Y et al (2012) Impact of a baseline polymorphism on the emergence of resistance to the hepatitis C virus nonstructural protein 5a replication complex inhibitor, BMS-790052. Hepatology 55:1692–1699. doi:10.1002/hep.25581

    CAS  PubMed  Google Scholar 

  250. Seronello S, Montanez J, Presleigh K et al (2011) Ethanol and reactive species increase basal sequence heterogeneity of hepatitis C virus and produce variants with reduced susceptibility to antivirals. PLoS One 6:e27436. doi:10.1371/journal.pone.0027436

    PubMed Central  CAS  PubMed  Google Scholar 

  251. Sherman KE, Rouster SD, Mendenhall C, Thee D (1999) Hepatitis cRNA quasispecies complexity in patients with alcoholic liver disease. Hepatology 30:265–270. doi:10.1002/hep.510300131

    CAS  PubMed  Google Scholar 

  252. Kane M (1995) Global programme for control of hepatitis B infection. Vaccine 13(Suppl 1):S47–S49

    PubMed  Google Scholar 

  253. Zoulim F, Locarnini S (2009) Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology 137:1593–1608. doi:10.1053/j.gastro.2009.08.063, e1–6

    CAS  PubMed  Google Scholar 

  254. Zoulim F, Locarnini S (2012) Management of treatment failure in chronic hepatitis B. J Hepatol 56(Suppl 1):S112–S122. doi:10.1016/S0168-8278(12)60012-9

    CAS  PubMed  Google Scholar 

  255. Ni Y-H, Chang M-H, Wang K-J et al (2004) Clinical relevance of hepatitis B virus genotype in children with chronic infection and hepatocellular carcinoma. Gastroenterology 127:1733–1738

    CAS  PubMed  Google Scholar 

  256. Ezzikouri S, Ozawa M, Kohara M et al (2014) Recent insights into hepatitis B virus-host interactions. J Med Virol 86(6):925–932. doi:10.1002/jmv.23916

    PubMed  Google Scholar 

  257. Glebe D, Urban S (2007) Viral and cellular determinants involved in hepadnaviral entry. World J Gastroenterol 13:22–38

    PubMed Central  CAS  PubMed  Google Scholar 

  258. Tong S, Li J (2014) Identification of NTCP as an HBV receptor: the beginning of the end or the end of the beginning? Gastroenterology 146(4):902–905. doi:10.1053/j.gastro.2014.02.024

    CAS  PubMed  Google Scholar 

  259. Hao Z, Zheng L, Kluwe L, Huang W (2012) Ferritin light chain and squamous cell carcinoma antigen 1 are coreceptors for cellular attachment and entry of hepatitis B virus. Int J Nanomedicine 7:827–834. doi:10.2147/IJN.S27803

    PubMed Central  CAS  PubMed  Google Scholar 

  260. Macovei A, Petrareanu C, Lazar C et al (2013) Regulation of hepatitis B virus infection by Rab5, Rab7, and the endolysosomal compartment. J Virol 87:6415–6427. doi:10.1128/JVI. 00393-13

    PubMed Central  CAS  PubMed  Google Scholar 

  261. Schmitz A, Schwarz A, Foss M et al (2010) Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog 6:e1000741. doi:10.1371/journal.ppat.1000741

    PubMed Central  PubMed  Google Scholar 

  262. Yang W, Summers J (1999) Integration of hepadnavirus DNA in infected liver: evidence for a linear precursor. J Virol 73:9710–9717

    PubMed Central  CAS  PubMed  Google Scholar 

  263. Zoulim F (2004) Mechanism of viral persistence and resistance to nucleoside and nucleotide analogs in chronic hepatitis B virus infection. Antiviral Res 64:1–15. doi:10.1016/j.antiviral.2004.07.003

    CAS  PubMed  Google Scholar 

  264. Nassal M (2008) Hepatitis B viruses: reverse transcription a different way. Virus Res 134:235–249. doi:10.1016/j.virusres.2007.12.024

    CAS  PubMed  Google Scholar 

  265. Koike K, Moriya K, Iino S et al (1994) High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology 19:810–819

    CAS  PubMed  Google Scholar 

  266. Iavarone M, Trabut J-B, Delpuech O et al (2003) Characterisation of hepatitis B virus X protein mutants in tumour and non-tumour liver cells using laser capture microdissection. J Hepatol 39:253–261

    CAS  PubMed  Google Scholar 

  267. León B, Taylor L, Vargas M et al (2005) HBx M130K and V131I (T-A) mutations in HBV genotype F during a follow-up study in chronic carriers. Virol J 2:60. doi:10.1186/1743-422X-2-60

    PubMed Central  PubMed  Google Scholar 

  268. Maguire HF, Hoeffler JP, Siddiqui A (1991) HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science 252:842–844

    CAS  PubMed  Google Scholar 

  269. Kekulé AS, Lauer U, Weiss L et al (1993) Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway. Nature 361:742–745. doi:10.1038/361742a0

    PubMed  Google Scholar 

  270. Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C (2006) Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 25:3823–3833. doi:10.1038/sj.onc.1209559

    CAS  PubMed  Google Scholar 

  271. Li Y, Tang Z-Y, Hou J-X (2012) Hepatocellular carcinoma: insight from animal models. Nat Rev Gastroenterol Hepatol 9:32–43. doi:10.1038/nrgastro.2011.196

    Google Scholar 

  272. Kim CM, Koike K, Saito I et al (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351:317–320. doi:10.1038/351317a0

    CAS  PubMed  Google Scholar 

  273. Chisari FV, Klopchin K, Moriyama T et al (1989) Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59:1145–1156

    CAS  PubMed  Google Scholar 

  274. Lakhtakia R, Kumar V, Reddi H et al (2003) Hepatocellular carcinoma in a hepatitis B “x” transgenic mouse model: a sequential pathological evaluation. J Gastroenterol Hepatol 18:80–91. doi:10.1046/j.1440-1746.2003.02902.x

    PubMed  Google Scholar 

  275. Wang Y, Cui F, Lv Y et al (2004) HBsAg and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology 39:318–324. doi:10.1002/hep.20076

    CAS  PubMed  Google Scholar 

  276. Hagen TM, Huang S, Curnutte J et al (1994) Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci U S A 91:12808–12812

    PubMed Central  CAS  PubMed  Google Scholar 

  277. Hsieh Y-H, Su I-J, Wang H-C et al (2004) Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 25:2023–2032. doi:10.1093/carcin/bgh207

    CAS  PubMed  Google Scholar 

  278. Huang X (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res 533:153–171

    CAS  PubMed  Google Scholar 

  279. Gu J-M, Lim SO, Oh SJ et al (2008) HBx modulates iron regulatory protein 1-mediated iron metabolism via reactive oxygen species. Virus Res 133:167–177. doi:10.1016/j.virusres.2007.12.014

    CAS  PubMed  Google Scholar 

  280. Waris G, Huh K-W, Siddiqui A (2001) Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol Cell Biol 21:7721–7730. doi:10.1128/MCB. 21.22.7721-7730.2001

    PubMed Central  CAS  PubMed  Google Scholar 

  281. Bouchard MJ, Schneider RJ (2004) The enigmatic X gene of hepatitis B virus. J Virol 78:12725–12734. doi:10.1128/JVI. 78.23.12725-12734.2004

    PubMed Central  CAS  PubMed  Google Scholar 

  282. Gollob JA, Wilhelm S, Carter C, Kelley SL (2006) Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol 33:392–406. doi:10.1053/j.seminoncol.2006.04.002

    CAS  PubMed  Google Scholar 

  283. Chen J, Siddiqui A (2007) Hepatitis B virus X protein stimulates the mitochondrial translocation of Raf-1 via oxidative stress. J Virol 81:6757–6760. doi:10.1128/JVI. 00172-07

    PubMed Central  CAS  PubMed  Google Scholar 

  284. Zheng YW, Yen TS (1994) Negative regulation of hepatitis B virus gene expression and replication by oxidative stress. J Biol Chem 269:8857–8862

    CAS  PubMed  Google Scholar 

  285. Chang K-C, Wu Y-Y, Hung C-H et al (2013) Clinical-guide risk prediction of hepatocellular carcinoma development in chronic hepatitis C patients after interferon-based therapy. Br J Cancer 109:2481–2488. doi:10.1038/bjc.2013.564

    PubMed Central  CAS  PubMed  Google Scholar 

  286. George SL, Bacon BR, Brunt EM et al (2009) Clinical, virologic, histologic, and biochemical outcomes after successful HCV therapy: A 5-year follow-up of 150 patients. Hepatology 49:729–738. doi:10.1002/hep.22694

    PubMed Central  CAS  PubMed  Google Scholar 

  287. Nojiri K, Sugimoto K, Shiraki K (2010) Development of hepatocellular carcinoma in patients with chronic hepatitis C more than 10 years after sustained virological response to interferon therapy. Oncol Lett 1(3):427–430. doi:10.3892/ol_00000075

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinah Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Corder, N.L.B., Koduru, B., Park, S.B., Wang, Y., Choi, J. (2015). Oxidative Stress in Chronic Viral Hepatitis. In: Albano, E., Parola, M. (eds) Studies on Hepatic Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15539-5_11

Download citation

Publish with us

Policies and ethics