Skip to main content

Acoustic Beamforming with Maximum SNR Criterion and Efficient Generalized Eigenvector Tracking

  • Conference paper
Advances in Multimedia Information Processing – PCM 2014 (PCM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8879))

Included in the following conference series:

Abstract

A recently proposed adaptive acoustic beamformer based on the maximization of the output SNR (Max-SNR beamformer) has an advantage of requiring no information of transfer functions. A key technology to implement Max-SNR beamformers is to estimate generalized eigenvector (GEV) of covariance matrices of target signal and noise, which are basically unknown. We develop a novel GEV tracking algorithm with decaying time windows that enable Max-SNR beamformer to adapt rapidly moving sources. Simulation results support the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America 65, 943–950 (1979)

    Article  Google Scholar 

  2. Fudge, G.L., Linebarger, D.A.: A calibrated generalized sidelobe canceller for wideband beamforming. IEEE Trans. Signal Process. 42(10), 2871–2875 (1994)

    Article  Google Scholar 

  3. Greenberg, J.E., Zurek, P.M.: Evaluation of an adaptive beamforming method for hearing aids. The Journal of the Acoustical Society of America 91, 1662–1676 (1992)

    Article  Google Scholar 

  4. Griffiths, L., Jim, C.: An alternative approach to linearly constrained adaptive beamforming. IEEE Trans. Antennas Propag. 30(1), 27–34 (1982)

    Article  Google Scholar 

  5. Habets, E., Benesty, J., Cohen, I., Gannot, S., Dmochowski, J.: New insights into the MVDR beamformer in room acoustics. IEEE Trans. Audio, Speech, and Language Process. 18(1), 158–170 (2010)

    Article  Google Scholar 

  6. Kolossa, D., Araki, S., Delcroix, M., Nakatani, T., Orglmeister, R., Makino, S.: Missing feature speech recognition in a meeting situation with maximum SNR beamforming. In: Proc. IEEE Int. Symp. Circuits Syst. (ISCAS 2008), pp. 3218–3221 (2008)

    Google Scholar 

  7. Kompis, M., Dillier, N.: Noise reduction for hearing aids: Combining directional microphones with an adaptive beamformer. The Journal of the Acoustical Society of America 96, 1910 (1994)

    Article  Google Scholar 

  8. MacLean, K.: VoxForge Repository (2006), http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/

  9. Seltzer, M.L., Raj, B., Stern, R.M.: Likelihood-maximizing beamforming for robust hands-free speech recognition. IEEE Trans. Speech Audio Process. 12(5), 489–498 (2004)

    Article  Google Scholar 

  10. Sohn, J., Kim, N.S., Sung, W.: A statistical model-based voice activity detection. IEEE Signal Process. Lett. 6(1), 1–3 (1999)

    Article  Google Scholar 

  11. Sohn, J., Sung, W.: A voice activity detector employing soft decision based noise spectrum adaptation. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP 1998), vol. 1, pp. 365–368 (1998)

    Google Scholar 

  12. Souden, M., Benesty, J., Affes, S.: A study of the lcmv and MVDR noise reduction filters. IEEE Trans. Signal Process. 58(9), 4925–4935 (2010)

    Article  MathSciNet  Google Scholar 

  13. Tanaka, T.: Fast generalized eigenvector tracking based on the power method. IEEE Signal Process. Lett. 16(11), 969–972 (2009)

    Article  Google Scholar 

  14. Warsitz, E., Haeb-Umbach, R.: Blind acoustic beamforming based on generalized eigenvalue decomposition. IEEE Trans. Audio, Speech, and Language Process. 15(5), 1529–1539 (2007)

    Article  Google Scholar 

  15. Yang, B.: Projection approximation subspace tracking. IEEE Trans. Signal Process. 43(1), 95–107 (1995)

    Article  MATH  Google Scholar 

  16. Yang, J., Zhao, Y., Xi, H.: Weighted rule based adaptive algorithm for simultaneously extracting generalized eigenvectors. IEEE Transactions on Neural Networks 22(5), 800–806 (2011)

    Article  Google Scholar 

  17. Yang, J., Zhao, Y., Xi, H.: Weighted rule based adaptive algorithm for simultaneously extraction generalized eigenvectors. IEEE Trans. Neural Netw. 22(5), 800–806 (2011)

    Article  Google Scholar 

  18. Zhang, C., Florêncio, D., Ba, D.E., Zhang, Z.: Maximum likelihood sound source localization and beamforming for directional microphone arrays in distributed meetings. IEEE Trans. Multimedia 10(3), 538–548 (2008)

    Article  Google Scholar 

  19. Zheng, Y., Goubran, R., El-Tanany, M., Shi, H.: A microphone array system for multimedia applications with near-field signal targets. IEEE Sensors Journal 5(6), 1395–1406 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tanaka, T., Shiono, M. (2014). Acoustic Beamforming with Maximum SNR Criterion and Efficient Generalized Eigenvector Tracking. In: Ooi, W.T., Snoek, C.G.M., Tan, H.K., Ho, CK., Huet, B., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2014. PCM 2014. Lecture Notes in Computer Science, vol 8879. Springer, Cham. https://doi.org/10.1007/978-3-319-13168-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13168-9_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13167-2

  • Online ISBN: 978-3-319-13168-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics