Skip to main content

An FPTAS for the Volume Computationof 0-1 Knapsack Polytopes Based on Approximate Convolution Integral

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8889))

Included in the following conference series:

Abstract

Computing high dimensional volumes is a hard problem, even for approximation. It is known that no polynomial-time deterministic algorithm can approximate with ratio \(1.999^n\) the volumes of convex bodies in the \(n\) dimension as given by membership oracles. Several randomized approximation techniques for #P-hard problems has been developed in the three decades, while some deterministic approximation algorithms are recently developed only for a few #P-hard problems. For instance, Stefankovic, Vempala and Vigoda (2012) gave an FPTAS for counting 0-1 knapsack solutions (i.e., integer points in a 0-1 knapsack polytope) based on an ingenious dynamic programming. Motivated by a new technique for designing FPTAS for #P-hard problems, this paper is concerned with the volume computation of \(0\)-\(1\) knapsack polytopes: it is given by \(\{{\varvec{x}} \in \mathbb {R}^n \mid {\varvec{a}}^{\top } {\varvec{x}} \le b,\ 0 \le x_i \le 1\ (i=1,\ldots ,n)\}\) with a positive integer vector \({\varvec{a}}\) and a positive integer \(b\) as an input, the volume computation of which is known to be #P-hard. Li and Shi (2014) gave an FPTAS for the problem by modifying the dynamic programming for counting solutions. This paper presents a new technique based on approximate convolution integral for a deterministic approximation of volume computations, and provides an FPTAS for the volume computation of 0-1 knapsack polytopes.

This work is partly supported by Grant-in-Aid for Scientific Research on Innovative Areas MEXT Japan “Exploring the Limits of Computation (ELC)” (No. 24106008, 24106005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandyopadhyay, A., Gamarnik, D.: Counting without sampling: asymptotics of the log-partition function for certain statistical physics models. Random Structures and Algorithms 33, 452–479 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete Computational Geometry 2, 319–326 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic approximation algorithms for counting matchings. In: Proc. of STOC 2007, pp. 122–127 (2007)

    Google Scholar 

  4. Dyer, M.: Approximate counting by dynamic programming. In: Proc. of STOC 2003, pp. 693–699 (2003)

    Google Scholar 

  5. Dyer, M., Frieze, A.: On the complexity of computing the volume of a polyhedron. SIAM Journal on Computing 17(5), 967–974 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approximating the volume of convex bodies. Journal of the Association for Computing Machinery 38(1), 1–17 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Elekes, G.: A geometric inequality and the complexity of computing volume. Discrete Computational Geometry 1, 289–292 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gamarnik, D., Katz, D.: Correlation decay and deterministic FPTAS for counting list-colorings of a graph. In: Proc. of SODA 2007, pp. 1245–1254 (2007)

    Google Scholar 

  9. Gopalan, P., Klivans, A., Meka, R.: Polynomial-time approximation schemes for knapsack and related counting problems using branching programs, arXiv:1008.3187v1 (2010)

  10. Gopalan, P., Klivans, A., Meka, R., Štefankovič, D., Vempala, S., Vigoda, E.: An FPTAS for #knapsack and related counting problems. In: Proc. of FOCS 2011, pp. 817–826 (2011)

    Google Scholar 

  11. Ko, K.-I.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  12. Li, L., Lu, P., Yin, Y.: Approximate counting via correlation decay in spin systems. In: Proc. of SODA 2012, pp. 922–940 (2012)

    Google Scholar 

  13. Li, L., Lu, P., Yin, Y.: Correlation decay up to uniqueness in spin systems. In: Proc. of SODA 2013, pp. 67–84 (2013)

    Google Scholar 

  14. Li, J., Shi, T.: A fully polynomial-time approximation scheme for approximating a sum of random variables. Operations Research Letters 42, 197–202 (2014)

    Article  MathSciNet  Google Scholar 

  15. Lin, C., Liu, J., Lu, P.: A simple FPTAS for counting edge covers. In: Proc. of SODA 2014, pp. 341–348 (2014)

    Google Scholar 

  16. Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM Society for industrial and applied mathematics, Philadelphia (1986)

    Google Scholar 

  17. Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an \(O^\ast (n^4)\) volume algorithm. Journal of Computer and System Sciences 72, 392–417 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mitra, S.: On the probability distribution of the sum of uniformly distributed random variables. SIAM Journal on Applied Mathematics 20(2), 195–198 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  19. Štefankovič, D., Vempala, S., Vigoda, E.: A deterministic polynomial-time approximation scheme for counting knapsack solutions. SIAM Journal on Computing 41(2), 356–366 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Weihrauch, K.: Computable Analysis An Introduction. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  21. Weitz, D.: Counting independent sets up to the tree threshold. In: Proc. STOC 2006, pp. 140–149 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ei Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ando, E., Kijima, S. (2014). An FPTAS for the Volume Computationof 0-1 Knapsack Polytopes Based on Approximate Convolution Integral. In: Ahn, HK., Shin, CS. (eds) Algorithms and Computation. ISAAC 2014. Lecture Notes in Computer Science(), vol 8889. Springer, Cham. https://doi.org/10.1007/978-3-319-13075-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13075-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13074-3

  • Online ISBN: 978-3-319-13075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics