Skip to main content

Optimizing Squares Covering a Set of Points

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8881))

Abstract

We investigate two kinds of optimization problems regarding points in the 2-dimensional plane that need to be enclosed by squares.

  1. (1)

    Given a set of \(n\) points, find a given number of squares that enclose all the points, minimizing the size of the largest square used.

  2. (2)

    Given a set of \(n\) points, enclose the maximum number of points, using a specified number of squares of a fixed size. We provide different techniques to solve the above problems in cases where squares are axis-parallel or of arbitrary orientation, disjoint or overlapping. All the algorithms we use run in time that is a low-order polynomial in \(n\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This polygon may be the convex hull of the points in \(\mathcal P\) computed in \(O(n \log n)\) time.

  2. 2.

    Since the points in \(\mathcal{P}'_l {\setminus }\{a, b, c, d\}\) cannot affect the size of the left square, they can be pruned.

  3. 3.

    To be exact, \(\mathcal{P}_1\) (resp. \(\mathcal{P}_2\), \(\mathcal{P}_3\)) covers the first \(\lceil n/3\rceil \) (resp. next \(\lfloor n/3\rfloor \), the remaining \(\lceil n/3\rceil \) or \(\lfloor n/3\rfloor \)) points. They can be determined in linear time [2]. So the difference is at most one.

References

  1. Agarwal, P.K., Sharir, M.: Planar geometric locations problems. Algorithmica 11, 185–195 (1994)

    Article  MathSciNet  Google Scholar 

  2. Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cabello, S., Díaz-Báñez, J.M., Seara, C., Sellares, J.A., Urrutia, J., Ventura, I.: Covering point sets with two disjoint disks or squares. Comput. Geom. 40(3), 195–206 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chandran, S., Mount, D.: A parallel algorithm for enclosed and enclosing triangles. Int. J. Comput. Geom. Appl. 2, 191–214 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Christofides, N., Hadjiconstantinou, E.: An exact algorithm for orthogonal 2-D cutting problems using guillotine cuts. Eur. J. Oper. Res. 83(1), 21–38 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Das, S., Goswami, P.P., Nandy, S.C.: Smallest \(k\)-point enclosing rectangle and square of arbitrary orientation. Inform. Process. Letts. 94, 259–266 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hoffmann, C.M.: Robustness in geometric computations. J. Comput. Inf. Sci Eng. 1(2), 143–155 (2001)

    Article  Google Scholar 

  8. Jaromczyk, J.W., Kowaluk, M.: Orientation independent covering of point sets \(R^{2}\) with pairs of rectangles or optimal squares. In: Proceedings of the European Workshop on Computational Geometry. LNCS, vol. 871, pp. 71–78. Springer, Heidelberg (1996)

    Google Scholar 

  9. Katz, M.J., Kedem, K., Segal, M.: Discrete rectilinear 2-center problems. Comput. Geom. 15(4), 203–214 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kim, S.S., Bae, S.W., Ahn, H.K.: Covering a point set by two disjoint rectangles. Int. J. Comput. Geom. Appl. 21(3), 313–330 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Klee, V., Laskowski, M.: Finding the smallest triangles containing a given convex polygon. J. Algorithms 6, 359–375 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mahapatra, P.R.S., Goswami, P.P., Das, S.: Covering points by isothetic unit squares. In: Proceedings of the Canadian Conference on Computational Geometry (CCCG), pp. 169–172 (2007)

    Google Scholar 

  13. Mahapatra, P.R.S., Goswami, P.P., Das, S.: Maximal covering by two isothetic unit squares. In: Proceedings of the Canadian Conference on Computational Geometry (CCCG), pp. 103–106 (2008)

    Google Scholar 

  14. Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inform. Process. Letts. 25(1), 11–12 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. O’Rourke, J.: Finding minimal enclosing boxes. Int. J. Comput. Inf. Sci. 14, 183–199 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. O’Rourke, J., Aggarwal, A., Maddila, S., Baldwin, M.: An optimal algorithm for finding minimal enclosing triangles. J. Algorithms 7, 258–269 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer, Berlin (1990)

    Google Scholar 

  18. Segal, M.: Lower bounds for covering problems. J. Math. Model. Algorithms 1, 17–29 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sharir, M., Welzl, E.: Rectilinear and polygonal \(p\)-piercing and \(p\)-center problems. In: ACM Symposium on Computational Geometry, pp. 122–132 (1996)

    Google Scholar 

  20. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceedings of the IEEE MELECON (1983)

    Google Scholar 

  21. Welzl, E.: Smallest enclosing disks (balls and ellipses). In: Maurer, H.A. (ed.) New Results and Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunehiko Kameda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhattacharya, B., Das, S., Kameda, T., Sinha Mahapatra, P.R., Song, Z. (2014). Optimizing Squares Covering a Set of Points. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12691-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12690-6

  • Online ISBN: 978-3-319-12691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics