Skip to main content

A Practical Greedy Approximation for the Directed Steiner Tree Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8881))

Abstract

The Directed Steiner Tree (DST) NP-hard problem asks, considering a directed weighted graph with \(n\) nodes and \(m\) arcs, a node \(r\) called root and a set of \(k\) nodes \(X\) called terminals, for a minimum cost directed tree rooted at \(r\) spanning \(X\). The best known polynomial approximation ratio for DST is a \(O(k^\varepsilon )\)-approximation greedy algorithm. However, a much faster \(k\)-approximation, returning the shortest paths from \(r\) to \(X\), is generally used in practice. We give in this paper a new \(O(\sqrt{k})\)-approximation greedy algorithm called Greedy\(_\mathrm{FLAC }\) \(^\triangleright \), derived from a new fast \(k\)-approximation algorithm called Greedy\(_\mathrm{FLAC }\) running in time at most \(O(n m k^2)\).

We provide computational results to show that, Greedy\(_\mathrm{FLAC }\) rivals the running time of the fast \(k\)-approximation and returns solution with smaller cost in practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The four algorithms were run with Java 1.7.0_025 on Ubuntu 12.10 with Intel Core 3.10 GHz processors. The code source can be found at https://github.com/mouton5000/DSTAlgoEvaluation.

References

  1. Karp, R.M.: Reducibility Among Combinatorial Problems. Springer, New York (1972)

    Google Scholar 

  2. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for steiner trees. Acta Inf. 15(2), 141–145 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zelikovsky, A.Z.: An 11/6-approximation algorithm for the network steiner problem. Algorithmica 9(5), 463–470 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Byrka, J., Grandoni, F., Rothvoss, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM (JACM) 60(1), 6:1–6:33 (2013)

    Article  Google Scholar 

  5. Cheng, X., Du, D.Z.: Steiner Trees in Industry, vol. 11. Springer, New York (2001)

    Google Scholar 

  6. Voß, S.: Steiner tree problems in telecommunications. In: Resende, M.G.C., Pardalos, P.M. (eds.) Handbook of Optimization in Telecommunications, pp. 459–492. Springer, New York (2006)

    Chapter  Google Scholar 

  7. Novak, R., Rugelj, J., Kandus, G.: A note on distributed multicast routing in point-to-point networks. Comput. Oper. Res. 28(12), 1149–1164 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 585–594 (2003)

    Google Scholar 

  10. Charikar, M., Chekuri, C., Cheung, T.Y., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed steiner problems. J. Algorithms 33(1), 73–91 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Helvig, C.S., Robins, G., Zelikovsky, A.: An improved approximation scheme for the group steiner problem. Networks 37(1), 8–20 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, pp. 38–49 (1973)

    Google Scholar 

  13. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Olsson, P.M., Kvarnstrom, J., Doherty, P., Burdakov, O., Holmberg, K.: Generating uav communication networks for monitoring and surveillance. In: 2010 11th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1070–1077. IEEE (2010)

    Google Scholar 

  15. Gundecha, P., Feng, Z., Liu, H.: Seeking provenance of information using social media. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 1691–1696. ACM (2013)

    Google Scholar 

  16. Lappas, T., Terzi, E., Gunopulos, D., Mannila, H.: Finding effectors in social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1059–1068. ACM (2010)

    Google Scholar 

  17. Koch, T., Martin, A., Voß, S.: SteinLib: an updated library on Steiner tree problems in graphs. In: Cheng, X.Z., Du, D.-Z. (eds.) Steiner Trees in Industry, pp. 285–325. Springer, New York (2001)

    Chapter  Google Scholar 

  18. Chimani, M., Woste, M.: Contraction-based steiner tree approximations in practice. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 40–49. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Stanojevic, M., Vujosevic, M.: An exact algorithm for steiner tree problem on graphs. Int. J. Comput. Commun. Control 1(1), 41–46 (2006)

    Google Scholar 

  20. Uchoa, E., Werneck, R.F.F.: Fast local search for steiner trees in graphs. In: ALENEX, vol. 10, pp. 1–10. SIAM (2010)

    Google Scholar 

  21. Drummond, L., Santos, M., Uchoa, E.: A distributed dual ascent algorithm for steiner problems in multicast routing. Networks 53(2), 170–183 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hsieh, M.I., Wu, E.H.K., Tsai, M.F.: Fasterdsp: a faster approximation algorithm for directed steiner tree problem. J. Inf. Sci. Eng. 22, 1409–1425 (2006)

    MathSciNet  Google Scholar 

  23. de Aragão, M.P., Uchoa, E., Werneck, R.F.: Dual heuristics on the exact solution of large steiner problems. Electron. Notes Discrete Math. 7, 150–153 (2001)

    Article  Google Scholar 

  24. Wong, R.T.: A dual ascent approach for steiner tree problems on a directed graph. Math. Program. 28(3), 271–287 (1984)

    Article  MATH  Google Scholar 

  25. Melkonian, V.: New primal-dual algorithms for steiner tree problems. Comput. Oper. Res. 34(7), 2147–2167 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed steiner tree problem. Algorithmica 18(1), 99–110 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Watel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Watel, D., Weisser, MA. (2014). A Practical Greedy Approximation for the Directed Steiner Tree Problem. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12691-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12690-6

  • Online ISBN: 978-3-319-12691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics