Skip to main content

Uranium induced stress promotes fungal excretion of uranium/metal stabilizing ligands: Analysis of metal-organic compounds with Size Exclusion Chromatography and Inductively Coupled Plasma-Mass Spectroscopy

  • Conference paper
  • First Online:
Uranium - Past and Future Challenges

Abstract

Weathering of pyrite rich alum shale processing waste has led to metal pollution in Kvarntorp, Sweden. Here we use a fungal strain isolated from the site to monitor the excretion of uranium/metal stabilizing ligands under uranium induced stress. After 2 weeks 91 % was lost from a 10 mg L−1 solution but 57 % already within 10 min. The formation of colloidal/particulate uranium is mainly controlled by organic exudates phosphorus excreted by the fungus. Most likely, the change in solution properties from metabolic processes resulted in the formation species through adsorption and precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aliferis KA, Jabadi S (2010) Metabolite Composition and Bioactivity of Rhizoctonia solani Sclerotial Exudates. J Agric Food Chem 58: 7604-7615

    Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007) Fungal transformations of uranium oxides. Environ Microbiol 9(7): 1969-1710

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformation of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3-49

    Google Scholar 

  • Green F, Clausen CA (2003) Copper tolerance of brown-rot fungi: time course of oxalic ac-id production. Int Biodeter Biodegr 51: 145-149

    Google Scholar 

  • Huang H, Yang X (2004) Synthesis of Polysaccharide-Stabilized Gold and Silver Nanopar-ticles: A Green Method. Carbohyd Res 339(15): 2627-2631

    Google Scholar 

  • Kapoor A, Viraraghavan D, Cullimore R (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technol 70: 95-104

    Google Scholar 

  • Kelly SD, Kemner KM, Fein JB, Fowle DA, Boyanov MI, Bunker BA, Yee N (2002) X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall inter-actions. Geochim Cosmochim Acta 66: 3855-3871

    Google Scholar 

  • Lenhart JJ, Cabaniss SE, MacCarthy P, Honeyman BD (2000) Uranium (VI) complexation with citric, humic and fulvic acids. Radiochim Acta 88: 345-353

    Google Scholar 

  • Mulligan CN, Kamali M (2003) Bioleaching of Copper and Other Metals from Low-Grade Oxidized Mining Ores Byaspergillus Niger. J Chem Technol Biotechnol 78(5): 497-503

    Google Scholar 

  • Ogar A, Grandin A, Sjöberg V, Turnau K, Karlsson S (2014) Stabilization of uranium at low pH by fungal metabolites: applications in environmental biotechnology. APCBEE Procedia, in press.

    Google Scholar 

  • Orłowska E, Orłowski D, Mesjasz-Przybyłowicz J, Turnau K (2011) Role of Mycorrhizal Colonization in Plant Establishment on an Alkaline Gold Mine Tailing. Int J Phytorem 13(2): 185-205

    Google Scholar 

  • Plassard C, Fransson P (2009) Regulation of low-molecular weight organic acid production in fungi. Fungal Biol Rev 23: 30-39

    Google Scholar 

  • Rai D, Yui M, Moore DA (2003) Solubility and solubility product at 22ºC of UO2 (c) pre-cipitated from aqueous (VI) solutions. J Sol Chem 32: 1-17

    Google Scholar 

  • Renshaw JC, Halliday V, Robson GD, Trinci APJ, Wiebe MG, Livens FR (2003) Devel-opment and application of an assay for uranyl complexation by fungal metabolites, in-cluding siderophores. Appl Environ Microbiol 69: 3600-3606

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Adv Colloid Interfac 145(1): 83-96

    Google Scholar 

  • Takao S (1965) Organic acid production by Basidiomycetes I. Screening acid-producing strains. Appl Microbiol 13: 732-737

    Google Scholar 

  • Zapotoczny S, Jurkiewicz A, Tylko G, Anielska T, Turnau K (2007) Accumulation of cop-per by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiol Res 162: 219-228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Grandin, A., Ogar, A., Sjöberg, V., Karlsson, S. (2015). Uranium induced stress promotes fungal excretion of uranium/metal stabilizing ligands: Analysis of metal-organic compounds with Size Exclusion Chromatography and Inductively Coupled Plasma-Mass Spectroscopy. In: Merkel, B., Arab, A. (eds) Uranium - Past and Future Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-11059-2_40

Download citation

Publish with us

Policies and ethics