Skip to main content

Risk Perception and Epidemic Spreading in Multiplex Networks

  • Chapter
Book cover ISCS 2014: Interdisciplinary Symposium on Complex Systems

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 14))

Abstract

In this paper we study the interplay between epidemic spreading and risk perception on multiplex networks. The basic idea is that the effective infection probability is affected by the perception of the risk of being infected, which we assume to be related to the number of infected neighbours. We re-derive previous results using a self-organized method, that automatically gives the percolation threshold in just one simulation. We then extend the model to multiplex networks considering that people get infected by contacts in real life but often gather information from an information networks, that may be quite different from the real ones. The similarity between the real and information networks determine the possibility of stopping the infection for a sufficiently high precaution level: if the networks are too different there is no mean of avoiding the epidemics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pandemic Scares Throughout History. Health Magazine (2013)

    Google Scholar 

  2. Wikipedia (2013), http://en.wikipedia.org/wiki/Pandemic

  3. The “false” pandemic: Drug firms cashed in on scare over swine flu, claims Euro health chief. Daily Mail (2010)

    Google Scholar 

  4. Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61, 5678–5682 (2000)

    Article  Google Scholar 

  5. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  Google Scholar 

  6. Newman, M.E.J.: Exact solutions of epidemic models on networks. Working Papers 01-12-073. Santa Fe Institute (December 2001)

    Google Scholar 

  7. May, R.M., Lloyd, A.L.: Infection dynamics on scale-free networks. Phys. Rev. E 64, 066112 (2001)

    Google Scholar 

  8. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65, 036104 (2002)

    Google Scholar 

  9. Bagnoli, F., Liò, P., Sguanci, L.: Risk perception in epidemic modeling. Phys. Rev. E 76, 061904 (2007)

    Google Scholar 

  10. Ginsberg, J., Mohebbi, M., Patel, R., Brammer, L., Smolinski, M., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014 (2009)

    Article  Google Scholar 

  11. Scanfeld, D., Scanfeld, V., Larson, E.L.: Dissemination of health information through social networks: Twitter and antibiotics. American Journal of Infection Control 38(3), 182–188 (2010)

    Article  Google Scholar 

  12. Chew, C., Eysenbach, G.: Pandemics in the age of twitter: Content analysis of tweets during the 2009 h1n1 outbreak. PLoS One 5(11), 014118 (2010)

    Google Scholar 

  13. The State of the News Media. The Pew Research Center’s project for Excellence in Journalism (2010)

    Google Scholar 

  14. Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96, 138701 (2006)

    Article  Google Scholar 

  15. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Szell, M., Lambiotte, R., Thurner, S.: Multirelational Organization of Large-scale Social Networks in an Online World (2010)

    Google Scholar 

  17. Arenas, A., Lozano, S., Rodriguez, X.-P.: Evolution of cooperation in multiplex networks. Scientific Reports 2 (2012)

    Google Scholar 

  18. Bianconi, G.: Statistical mechanics of multiplex networks: Entropy and overlap. Phys. Rev. E 87, 062806 (2013)

    Google Scholar 

  19. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)

    Article  Google Scholar 

  20. Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8(1), 40–48 (2012)

    Article  Google Scholar 

  21. Granell, C., Gómez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013)

    Article  Google Scholar 

  22. Bagnoli, F., Palmerini, P., Rechtman, R.: Algorithmic mapping from criticality to self-organized criticality. Phys. Rev. E 55, 3970–3976 (1997)

    Article  Google Scholar 

  23. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Advances in Physics 51, 1079–1187 (2002)

    Article  Google Scholar 

  24. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics in finite size scale-free networks. Physical Review E 65(035108) (2002)

    Google Scholar 

  25. Domany, E., Kinzel, W.: Equivalence of cellular automata to ising models and directed percolation. Phys. Rev. Lett. 53, 311–314 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Bagnoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bagnoli, F., Massaro, E. (2015). Risk Perception and Epidemic Spreading in Multiplex Networks. In: Sanayei, A., E. Rössler, O., Zelinka, I. (eds) ISCS 2014: Interdisciplinary Symposium on Complex Systems. Emergence, Complexity and Computation, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-10759-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10759-2_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10758-5

  • Online ISBN: 978-3-319-10759-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics