Skip to main content

Acute Risks of Space Radiation

Definition

The space radiation environment consists of highly charged and energetic particles that include high-energy protons released from the sun during solar particle events (SPEs). SPEs that are above 25–30 mega-electron volts (MeV) can penetrate the shielding on the International Space Station (ISS) and present a major challenge for the National Aeronautics and Space Administration (NASA). During long-term deep space missions, it is anticipated that multiple SPEs will be encountered. Such exposures are a significant radiation hazard to astronauts and spacecraft. Indeed, exposure to SPEs may place astronauts at risk for acute radiation sickness (ARS), prodromal effects, skin damage, hematological/immune deficits, and changes in other body compartments. The timing of symptom onset varies with radiation dose, dose rate, quality, and individual sensitivity.

Overview of ARS Following Acute Exposure Due to SPEs

During an SPE, the sun releases a large amount of energetic particles....

This is a preview of subscription content, log in via an institution.

References

  • Anno GH, Baum SJ, Withers HR, Young RW (1989) Symptomatology of acute radiation effects in humans after exposure to doses of 0.5–30 Gy. Health Phys 56(6):821–838

    Article  Google Scholar 

  • Ayala F, Palla M, Di Trolio R, Mozzillo N, Ascierto PA (2013) The role of optical radiations in skin cancer. ISRN Dermatol 2013. https://doi.org/10.1155/2013/842359

    Article  Google Scholar 

  • Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ (2010) Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair. Radiology 254(2):326–341. https://doi.org/10.1148/radiol.2542082312

    Article  Google Scholar 

  • Baluchamy S, Ravichandran P, Periyakaruppan A, Ramesh V, Hall JC, Zhang Y, Jejelowo O, Gridley DS, Wu H, Ramesh GT (2010) Induction of cell death through alteration of oxidants and antioxidants in lung epithelial cells exposed to high energy protons. J Biol Chem 285(32):24769–24774. https://doi.org/10.1074/jbc.M110.138099

    Article  Google Scholar 

  • Baqai FP, Gridley DS, Slater JM, Luo-Owen X, Stodieck LS, Ferguson V, Chapes SK, Pecaut MJ (2009) Effects of spaceflight on innate immune function and antioxidant gene expression. J Appl Physiol (1985) 106(6):1935–1942. https://doi.org/10.1152/japplphysiol.91361.2008

    Article  Google Scholar 

  • Brandt EB, Sivaprasad U (2011) Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2(3). https://doi.org/10.4172/2155-9899.1000110

  • Chancellor JC, Scott GB, Sutton JP (2014) Space radiation: the number one risk to astronaut health beyond low earth orbit. Life (Basel) 4(3):491–510. https://doi.org/10.3390/life4030491

    Article  Google Scholar 

  • Crucian B, Stowe R, Quiriarte H, Pierson D, Sams C (2011) Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat Space Environ Med 82(9):857–862

    Article  Google Scholar 

  • Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, Sams C (2013) Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol 33(2):456–465. https://doi.org/10.1007/s10875-012-9824-7

    Article  Google Scholar 

  • Cucinotta FA (1999) Issues in risk assessment from solar particle events. Radiat Meas 30(3):261–268

    Article  Google Scholar 

  • Donnelly EH, Nemhauser JB, Smith JM, Kazzi ZN, Farfán EB, Chang AS, Naeem SF (2010) Acute radiation syndrome: assessment and management. South Med J 103(6):541–546. https://doi.org/10.1097/SMJ.0b013e3181ddd571

    Article  Google Scholar 

  • Elmore E, Lao XY, Kapadia R, Redpath JL (2006) The effect of dose rate on radiation-induced neoplastic transformation in vitro by low doses of low-LET radiation. Radiat Res 166(6):832–838. https://doi.org/10.1667/RR0682.1

    Article  Google Scholar 

  • Grammaticos P, Giannoula E, Fountos GP (2013) Acute radiation syndrome and chronic radiation syndrome. Hell J Nucl Med 16(1):56–59

    Google Scholar 

  • Gridley DS, Pecaut MJ (2011) Genetic background and lymphocyte populations after total-body exposure to iron ion radiation. Int J Radiat Biol 87(1):8–23. https://doi.org/10.3109/09553002.2010.518203

    Article  Google Scholar 

  • Gridley DS, Pecaut MJ, Dutta-Roy R, Nelson GA (2002a) Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: Part I. Immunol Lett 80(1):55–66

    Article  Google Scholar 

  • Gridley DS, Pecaut MJ, Nelson GA (2002b) Total-body irradiation with high-LET particles: acute and chronic effects on the immune system. Am J Physiol Regul Integr Comp Physiol 282(3):R677–R688

    Article  Google Scholar 

  • Gridley DS, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, Stodieck LS, Lacey DL, Simske SJ, Pecaut MJ (2003) Genetic models in applied physiology: selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J Appl Physiol 94(5):2095–2103. https://doi.org/10.1152/japplphysiol.01053.2002

    Article  Google Scholar 

  • Gridley DS, Dutta-Roy R, Andres ML, Nelson GA, Pecaut MJ (2006) Acute effects of iron radiation on immunity, part II: leukocyte activation, cytokines, and adhesion. Radiat Res 165(1):78–87. https://doi.org/10.1667/RR1155.1

    Article  Google Scholar 

  • Gridley DS, Coutrakon GB, Rizvi A, Bayeta EJ, Luo-Owen X, Makinde AY, Baqai F, Koss P, Slater JM, Pecaut MJ (2008a) Low-dose photons modify liver response to simulated solar particle event protons. Radiat Res 169(3):280–287

    Article  Google Scholar 

  • Gridley DS, Rizvi A, Luo-Owen X, Makinde AY, Coutrakon GB, Koss P, Slater JM, Pecaut MJ (2008b) Variable hematopoietic responses to acute photons, protons and simulated solar particle event protons. In Vivo 22(2):159–169

    Google Scholar 

  • Gridley DS, Pecaut MJ, Rizvi A, Coutrakon GB, Luo-Owen X, Makinde AY, Slater JM (2009) Low-dose, low-dose-rate proton radiation modulates CD4(+) T cell gene expression. Int J Radiat Biol 85(3):250–261. https://doi.org/10.1080/09553000902748609

    Article  Google Scholar 

  • Gridley DS, Luo-Owen X, Rizvi A, Makinde AY, Pecaut MJ, Mao XW, Slater JM (2010) Low-dose photon and simulated solar particle event proton effects on Foxp3+ T regulatory cells and other leukocytes. Technol Cancer Res Treat 9(6):637–649. https://doi.org/10.3109/09553002.2012.715792

    Article  Google Scholar 

  • Gridley D, Pecaut M, Green L, Herrmann E, Bianski B, Slater J, Stodieck L, Ferguson V, Sandberg L (2012) Effects of space flight on the expression of liver proteins in the mouse. J Proteomics Bioinform 5:256–261

    Article  Google Scholar 

  • Gridley DS, Mao XW, Cao JD, Bayeta EJ, Pecaut MJ (2013a) Protracted low-dose radiation priming and response of liver to acute gamma and proton radiation. Free Radic Res 47(10):811–820. https://doi.org/10.3109/10715762.2013.826351

    Article  Google Scholar 

  • Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, Cunningham CE, Jones TA, Slater JM, Pecaut MJ (2013b) Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One 8(9):e75097. https://doi.org/10.1371/journal.pone.0075097

    Article  Google Scholar 

  • Gridley DS, Rizvi A, Makinde AY, Luo-Owen X, Mao XW, Tian J, Slater JM, Pecaut MJ (2013c) Space-relevant radiation modifies cytokine profiles, signaling proteins and Foxp3+ T cells. Int J Radiat Biol 89(1):26–35. https://doi.org/10.3109/09553002.2012.715792

    Article  Google Scholar 

  • Gridley DS, Mao XW, Tian J, Cao JD, Perez C, Stodieck LS, Ferguson VL, Bateman TA, Pecaut MJ (2015) Genetic and apoptotic changes in lungs of mice flown on the STS-135 mission in space. In Vivo 29:423–433

    Google Scholar 

  • Grindeland RE (1990) Cosmos 1887: science overview. FASEB J 4(1):10–15

    Article  Google Scholar 

  • Hu S, Kim MH, McClellan GE, Cucinotta FA (2009) Modeling the acute health effects of astronauts from exposures to large solar particle events. Health Phys 96(4):465–476

    Article  Google Scholar 

  • Jonscher KR, Alfonso-Garcia A, Suhalim J, Orlicky DJ, Potma EO, Bouxein ML, Bateman TA, Ferguson VL, Stodieck LS, Friedman JE, Gridley DS, Pecaut MJ (2015) Spaceflight activates lipogenic pathways in the liver. PLoS One 11(4):e0152877. https://doi.org/10.1371/journal.pone.0152877

    Article  Google Scholar 

  • Kennedy AR (2014) Biological effects of space radiation and development of effective countermeasures. Life Sci Space Res (Amst) 1:10–43. https://doi.org/10.1016/j.lssr.2014.02.004

    Article  Google Scholar 

  • Kim MH, Hayat MJ, Feiveson AH, Cucinotta FA (2009) Prediction of frequency and exposure level of solar particle events. Health Phys 97(1):68–81

    Article  Google Scholar 

  • King GL (1988) Characterization of radiation-induced emesis in the ferret. Radiat Res 114(3):599–612

    Article  Google Scholar 

  • Li M, Holmes V, Zhou Y, Ni H, Sanzari JK, Kennedy AR, Weissman D (2014) Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections. PLoS One 9(1):e85665. https://doi.org/10.1371/journal.pone.0085665

    Article  Google Scholar 

  • Luo-Owen X, Pecaut MJ, Rizvi A, Gridley DS (2012) Low-dose total-body gamma irradiation modulates immune response to acute proton radiation. Radiat Res 177(3):251–264. https://doi.org/10.1667/RR2785.1

    Article  Google Scholar 

  • Maier I, Berry DM, Schiestl RH (2014) Intestinal microbiota reduces genotoxic endpoints induced by high-energy protons. Radiat Res 181(1):45–53. https://doi.org/10.1667/RR13352.1

    Article  Google Scholar 

  • Mao XW, Mekonnen T, Kennedy AR, Gridley DS (2011) Differential expression of oxidative stress and extracellular matrix remodeling genes in low- or high-dose-rate photon-irradiated skin. Radiat Res 176(2):187–197

    Article  Google Scholar 

  • Mao XW, Pecaut MJ, Stodieck LS, Ferguson VL, Bateman TA, Bouxsein ML, Gridley DS (2014) Biological and metabolic response in STS-135 space-flown mouse skin. Free Radic Res 48(8):890–897. https://doi.org/10.3109/10715762.2014.920086

    Article  Google Scholar 

  • NAS/NRC (2008) Space radiation hazards and the vision for space exploration. National Academy Press, Washington. D.C.

    Google Scholar 

  • NCRP (1989) NCRP Report 98: guidance on radiation received in space activities. National Council on Radiation Protection and Measurements, Bethesda

    Google Scholar 

  • NCRP (2000) NCRP report 132: radiation protection guidance for activities in low-earth orbit. National Council on Radiation Protection and Measurements, Bethesda

    Google Scholar 

  • NCRP (2006) NCRP report 153: information needed to make radiation protection recommendations for space missions beyond low-earth orbit. National Council on Radiation Protection and Measurements, Bethesda

    Google Scholar 

  • NCRP (2010) NCRP report 167: potential impact of individual genetic susceptibility and previous radiation exposure on radiation risk for astronaut. National Council on Radiation Protection and Measurements, Bethesda

    Google Scholar 

  • Ni H, Balint K, Zhou Y, Gridley DS, Maks C, Kennedy AR, Weissman D (2011) Effect of solar particle event radiation on gastrointestinal tract bacterial translocation and immune activation. Radiat Res 175(4):485–492. https://doi.org/10.1667/RR2373.1

    Article  Google Scholar 

  • Pecaut MJ, Gridley DS (2010) The impact of mouse strain on iron ion radio-immune response of leukocyte populations. Int J Radiat Biol 86(5):409–419. https://doi.org/10.3109/09553000903567995

    Article  Google Scholar 

  • Pecaut MJ, Simske SJ, Fleshner M (2000) Spaceflight induces changes in splenocyte subpopulations: effectiveness of ground-based models. Am J Physiol Regul Integr Comp Physiol 279(6):R2072–R2078. https://doi.org/10.1152/ajpregu.2000.279.6.R2072

    Article  Google Scholar 

  • Pecaut MJ, Gridley DS, Smith AL, Nelson GA (2002) Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II. Immunol Lett 80(1):67–73

    Article  Google Scholar 

  • Pecaut MJ, Nelson GA, Peters LL, Kostenuik PJ, Bateman TA, Morony S, Stodieck LS, Lacey DL, Simske SJ, Gridley DS (2003) Genetic models in applied physiology: selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. I. Immune population distributions. J Appl Physiol 94(5):2085–2094. https://doi.org/10.1152/japplphysiol.01052.2002

    Article  Google Scholar 

  • Pecaut MJ, Dutta-Roy R, Smith AL, Jones TA, Nelson GA, Gridley DS (2006) Acute effects of iron radiation on immunity, part I: population distributions. Radiat Res 165(1):68–77

    Google Scholar 

  • Peter RU (2013). [Cutaneous radiation syndrome after accidental skin exposure to ionizing radiation) Hautarzt 64(12):894–903. https://doi.org/10.1007/s00105-013-2625-y

    Article  Google Scholar 

  • Prisk GK (2014) Microgravity and the respiratory system. Eur Respir J 43(5):1459–1471. https://doi.org/10.1183/09031936.00001414

    Article  Google Scholar 

  • Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  Google Scholar 

  • Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43(2 Suppl 1):S54–S62. https://doi.org/10.1002/hep.21060

    Article  Google Scholar 

  • Ritchie LE, Taddeo SS, Weeks BR, Lima F, Bloomfield SA, Azcarate-Peril MA, Zwart SR, Smith SM, Turner ND (2015) Space environmental factor impacts upon murine colon microbiota and mucosal homeostasis. PLoS One 10(6):e0125792. https://doi.org/10.1371/journal.pone.0125792

    Article  Google Scholar 

  • Rizvi A, Pecaut MJ, Gridley DS (2011) Low-dose gamma-rays and simulated solar particle event protons modify splenocyte gene and cytokine expression patterns. J Radiat Res (Tokyo) 52(6):701–711. JST.JSTAGE/jrr/10107 [pii]

    Article  Google Scholar 

  • Romero-Weaver AL, Ni J, Lin L, Kennedy AR (2014) Orally administered fructose increases the numbers of peripheral lymphocytes reduced by exposure of mice to gamma or SPE-like proton radiation. Life Sci Space Res (Amst) 2:80–85. https://doi.org/10.1016/j.lssr.2014.01.001

    Article  Google Scholar 

  • Sanzari JK, Romero-Weaver AL, James G, Krigsfeld G, Lin L, Diffenderfer ES, Kennedy AR (2013a) Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure. PLoS One 8(8):e71757. https://doi.org/10.1371/journal.pone.0071757

    Article  Google Scholar 

  • Sanzari JK, Wan XS, Krigsfeld GS, King GL, Miller A, Mick R, Gridley DS, Wroe AJ, Rightnar S, Dolney D, Kennedy AR (2013b) Effects of solar particle event proton radiation on parameters related to ferret emesis. Radiat Res 180(2):166–176. https://doi.org/10.1667/RR3173.1

    Article  Google Scholar 

  • Sanzari JK, Wan XS, Wroe AJ, Rightnar S, Cengel KA, Diffenderfer ES, Krigsfeld GS, Gridley DS, Kennedy AR (2013c) Acute hematological effects of solar particle event proton radiation in the porcine model. Radiat Res 180(1):7–16. https://doi.org/10.1667/RR3027.1

    Article  Google Scholar 

  • Sanzari JK, Cengel KA, Wan XS, Rusek A, Kennedy AR (2014) Acute hematological effects in mice exposed to the expected doses, dose-rates, and energies of solar particle event-like proton radiation. Life Sci Space Res (Amst) 2:86–91. https://doi.org/10.1016/j.lssr.2014.01.003

    Article  Google Scholar 

  • Sanzari JK, Diffenderfer ES, Hagan S, Billings PC, Gridley DS, Seykora JT, Kennedy AR, Cengel KA (2015) Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model. Life Sci Space Res 6:21–8

    Article  Google Scholar 

  • Stein TP, Schluter MD (1994) Excretion of IL-6 by astronauts during spaceflight. Am J Phys 266(3 Pt 1):E448–E452. https://doi.org/10.1152/ajpendo.1994.266.3.E448

    Article  Google Scholar 

  • Stein TP, Schluter MD (2006) Plasma protein synthesis after spaceflight. Aviat Space Environ Med 77(7):745–748

    Google Scholar 

  • Stein TP, Larina IM, Leskiv MJ, Schluter MD (2000). [Protein turnover during and after extended space flight) Aviakosm Ekolog Med 34(3):12–16

    Google Scholar 

  • Stowe RP, Sams CF, Pierson DL (2011) Adrenocortical and immune responses following short- and long-duration spaceflight. Aviat Space Environ Med 82(6):627–634

    Article  Google Scholar 

  • Tian J, Pecaut MJ, Coutrakon GB, Slater JM, Gridley DS (2009) Response of extracellular matrix regulators in mouse lung after exposure to photons, protons and simulated solar particle event protons. Radiat Res 172(1):30–41. https://doi.org/10.1667/RR1670.1

    Article  Google Scholar 

  • Tian J, Pecaut MJ, Slater JM, Gridley DS (2010) Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung. J Appl Physiol 108(1):162–171. https://doi.org/10.1152/japplphysiol.00730.2009

    Article  Google Scholar 

  • Tian J, Zhao W, Tian S, Slater JM, Deng Z, Gridley DS (2011) Expression of genes involved in mouse lung cell differentiation/regulation after acute exposure to photons and protons with or without low-dose preirradiation. Radiat Res 176(5):553–564

    Article  Google Scholar 

  • Townsend LW, Cucinotta FA, Wilson JW, Bagga R (1994) Estimates of HZE particle contributions to SPE radiation exposures on interplanetary missions. Adv Space Res 14:671–674

    Article  Google Scholar 

  • West JB, Elliott AR, Guy HJ, Prisk GK (1997) Pulmonary function in space. JAMA 277(24):1957–1961

    Article  Google Scholar 

  • Wilson JM, Sanzari JK, Diffenderfer ES, Yee SS, Seykora JT, Maks C, Ware JH, Litt HI, Reetz JA, McDonough J, Weissman D, Kennedy AR, Cengel KA (2011) Acute biological effects of simulating the whole-body radiation dose distribution from a solar particle event using a porcine model. Radiat Res 176(5):649–659

    Article  Google Scholar 

  • Wu H, Huff JL, Casey R, Kim MH, Cucinotta FA (2013) Evidence report: risk of acute radiation syndromes due to solar particle events. National Aeronautical and Space Agency, Houston. https://humanresearchroadmap.nasa.gov/evidence/reports/ars.pdf

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao W. Mao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mao, X.W., Pecaut, M.J., Gridley, D.S. (2019). Acute Risks of Space Radiation. In: Young, L., Sutton, J. (eds) Encyclopedia of Bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10152-1_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10152-1

  • Online ISBN: 978-3-319-10152-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Acute Risks of Space Radiation
    Published:
    24 October 2020

    DOI: https://doi.org/10.1007/978-3-319-10152-1_27-2

  2. Original

    Acute Risks of Space Radiation
    Published:
    24 October 2018

    DOI: https://doi.org/10.1007/978-3-319-10152-1_27-1