Skip to main content

Dynamic Analysis of Parametrically Excited Piezoelectric Bimorph Beam for Energy Harvesting

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 23))

Abstract

In this work, the dynamics of an energy harvester which is modeled as a base excited cantilever beam with tip mass having piezoelectric patches on both top and bottom surfaces has been investigated. The governing equation of motion of the system is developed using extended Hamilton’s principle and it is solved by using method of multiple scales. Closed form solution has been developed to find out the voltage generated from this nonlinear energy harvester. While in most of the previously considered energy harvesters the system is considered without tip mass and axial load, here putting the additional tip mass and periodic axial load, different resonance conditions have been explored. A parametric study has been carried out to investigate the variation of generated voltage with different system parameters. The study will find application in the generation of voltage for a wide range of frequencies available in ambient vibration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yildiz F (2007) Potential ambient energy-harvesting sources and techniques. J Technol Stud 35:40–48

    Google Scholar 

  2. Masana R, Daqaq MF (2011) Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J Vib Acoust 133:011007-1

    Google Scholar 

  3. Romani A, Tartagni M, Sangiorgi E, Paganelli RP (2010) An energy autonomous switching converter for harvesting power from multiple piezoelectric transducers. In: IEEE Sensors Conference, pp 1173–1176. ISBN: 978-1-4244-8168-2/10

    Google Scholar 

  4. Karami MA, Inman DJ (2011) Analytical modeling and experimental verification of the vibrations of the zigzag microstructure for energy harvesting. J Vib Acoust 133:011002-1

    Google Scholar 

  5. Mahmoodi SN, Jalili N (2007) Non-linear vibrations and frequency response analysis of piezoelectrically driven micro cantilevers. Int J Non-Linear Mech 42:577–587

    Article  Google Scholar 

  6. Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13(5):1131–1142

    Article  Google Scholar 

  7. Mak KH, Popov AA, McWilliam S (2012) Experimental model validation for a nonlinear energy harvester incorporating a bump stop. J Sound Vib 331:2602–2623

    Article  Google Scholar 

  8. Nayfeh AH (1979) Nonlinear Oscillations. Willey, New Jersey

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dwivedy .

Editor information

Editors and Affiliations

Appendix

Appendix

\( \begin{aligned} \bar{\omega }_{n} & = K_{n} - P_{n} \\ M & = \int\limits_{0}^{{L_{b} }} {m_{b} \phi_{n}^{2} ds} \\ K_{n} & = (E_{s} I_{s} + 2E_{p} I_{p} )\int\limits_{0}^{{L_{b} }} {\phi_{n} (\phi^{\prime\prime}_{n} } )^{\prime\prime}ds \\ P_{n} & = p_{0} \int\limits_{0}^{{L_{b} }} {\phi_{n} } \phi^{\prime\prime}_{n} ds \\ \bar{\Lambda}_{n} & = (E_{s} I_{s} + 2E_{p} I_{p} )\int\limits_{0}^{{L_{b} }} {\phi_{n} [\phi^{\prime}_{n} (\phi^{\prime}_{n} \phi^{\prime\prime}_{n} )^{\prime}]}^{\prime } ds \\ \bar{F}_{2} & = p\cos ({\bar{\Omega }}_{2}\,\bar{t}) \\ \end{aligned} \)

\( \begin{aligned} \theta_{an} & = - \int\limits_{0}^{{L_{b} }} {\phi_{n} K^{\prime\prime}_{a} } ds \\ \theta_{bn} & = - \int\limits_{0}^{{L_{b} }} {[\frac{1}{2}\phi_{n} (K_{a} \phi^{{{\prime }2}}_{n} )^{\prime\prime} - \phi_{n} (K_{a} \phi^{\prime}_{n} \phi^{\prime\prime}_{n} )^{\prime}]} ds \\ C_{p} & = \frac{{b_{p} \hat{\varepsilon }L_{b} }}{{2t_{p} }} \\ \theta_{cn} & = \frac{3}{2}\int\limits_{0}^{{L_{b} }} {K_{a} \phi^{{{\prime }2}}_{n} } \phi_{n} ds \\ \bar{F}_{1} & = m_{b}{g}\int\limits_{0}^{{L_{b} }} {\phi_{n} ds} \\ z &= \left( {\omega}_{n}^{2} + i {\omega} _{n} r_{e}\right) / \left( \omega_{n}^{2} + r_{e}^{2}\right) \end{aligned} \)

$$ \phi_{i} (s) = - \frac{{\sin \beta_{n} L_{b} + \sinh \beta_{n} L_{b} }}{{\cos \beta_{n} L_{b} + \cosh \beta_{n} L_{b} }}(\cos \beta_{n} s - \cosh \beta_{n} s) + (\sin \beta_{n} s - \sinh \beta_{n} s) $$

\( \beta_{n} \) is obtained by solving the equation

$$ 1 + \cosh (\beta_{n} L_{b} )\cos (\beta_{n} L_{b} ) + (\frac{{m_{t} }}{{m_{b} }})(\cos \beta_{n} L_{b} \sinh \beta_{n} L_{b} - \sin \beta_{n} L_{b} \cosh \beta_{n} L_{b} ) = 0 $$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dwivedy, S.K., Reddy, A.K., Garg, A. (2015). Dynamic Analysis of Parametrically Excited Piezoelectric Bimorph Beam for Energy Harvesting. In: Sinha, J. (eds) Vibration Engineering and Technology of Machinery. Mechanisms and Machine Science, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-09918-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09918-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09917-0

  • Online ISBN: 978-3-319-09918-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics