Skip to main content

Types of Hot Jupiter Atmospheres

  • Chapter
  • First Online:
Characterizing Stellar and Exoplanetary Environments

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 411))

Abstract

Hot Jupiters, i.e. exoplanet gas giants, having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1 AU, are a unique class of objects. Since they are so close to the host stars, their atmospheres form and evolve under the action of very active gas dynamical processes caused by the gravitational field and irradiation of the host star. As a matter of fact, the atmospheres of several of these planets fill their Roche lobes , which results in a powerful outflow of material from the planet towards the host star. The energy budget of this process is so important that it almost solely governs the evolution of hot Jupiters gaseous envelopes. Based on the years of experience in the simulations of gas dynamics in mass-exchanging close binary stars, we have investigated specific features of hot Jupiters atmospheres. The analytical estimates and results of 3D numerical simulations, discussed in this Chapter, show that the gaseous envelopes around hot Jupiters may be significantly non-spherical and, at the same time, stationary and long-lived. These results are of fundamental importance for the interpretation of observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The atmosphere, when expanding, approaches the L1 and L2 points (say, uncork these points) at almost the same time. Thus, hereafter we consider a criterion of corking/uncorking only for the L1 point, keeping in mind that the outflow starts/end through both points.

  2. 2.

    Our assumption that the temperature of the stream is constant all along its trajectory is justified by the fact that the stream and the upper planet’s atmosphere are heated by the radiation of the star in the same way.

References

  • Baranov, V. B., & Krasnobaev, K. V. (1977). Hydrodynamic theory of a cosmic plasma. Moscow: Izdatel Nauka.

    Google Scholar 

  • Ben-Jaffel, L. (2007). Astrophysical Journal Letters, 671, L61.

    Article  ADS  Google Scholar 

  • Ben-Jaffel, L., & Sona Hosseini, S. (2010). Astrophysical Journal, 709, 1284.

    Article  ADS  Google Scholar 

  • Bisikalo, D. V., Boyarchuk, A. A., Kaigorodov, P. V., Kuznetsov, O. A., & Matsuda, T. (2004). Astronomy Reports, 48, 449.

    Article  ADS  Google Scholar 

  • Bisikalo, D. V., Kaygorodov, P. V., Ionov, D. E., Shematovich, V. I., Lammer, H., & Fossati, L. (2013a). Astrophysical Journal, 764, 19.

    Article  ADS  Google Scholar 

  • Bisikalo, D. V., Kaigorodov, P. V., Ionov, D. E., & Shematovich, V. I. (2013b). Astronomy Reports, 57, 715.

    Article  ADS  Google Scholar 

  • Bisikalo, D. V., Kaygorodov, P. V., & Ionov, D. E. (2013c). In N. V. Pogorelov, E. Audit, G. P. Zank (Eds.), Numerical modeling of space plasma flows (Astronomical Society of the Pacific Conference Series, vol 474, pp. 41). San Francisco: Astronomical Society of the Pacific.

    Google Scholar 

  • Bisikalo, D. V., Zhilkin A. G., & Boyarchuk A. A. (2013d). Gas dynamic close binary stars (in Russian). Moscow: Physmatlit.

    Google Scholar 

  • Boyarchuk, A. A., Bisikalo, D. V., Kuznetsov, O. A., & Chechetkin, V. M. (2002). Mass Transfer in Close Binary Stars (Advances in astronomy and astrophysics, Vol. 6, pp 1–365). London and New York: Francis & Taylor.

    Google Scholar 

  • Campo, C. J., Harrington, J., Hardy, R. A., Stevenson, K. B., Nymeyer, S., Ragozzine, D., Lust, N. B., Anderson, D. R., Collier-Cameron, A., Blecic, J., Britt, C. B. T., Bowman, W. C., Wheatley, P. J., Loredo, T. J., Deming, D., Hebb, L., Hellier, C., Maxted, P. F. L., Pollaco, D., & West, R. G. (2011). Astrophysical Journal, 727, 125.

    Article  ADS  Google Scholar 

  • Chan, T., Ingemyr, M., Winn, J. N., Holman, M. N., Sanchis-Ojeda, R., Esquerdo, G., & Everett, M. (2011). Astrophysical Journal, 141, 179.

    ADS  Google Scholar 

  • Cherenkov, A. A., Bisikalo, D. V., & Kaigorodov, P. V. (2014). Astronomy Reports, 58, 679.

    Article  ADS  Google Scholar 

  • Fossati, L., Haswell, C. A., Froning, C. S., Hebb, L., Holmes, S., Kolb, U., Helling, C., Carter, A., Wheatley, P., Collier Cameron, A., Loeillet, B., Pollacco, D., Street, R., Stempels, H. C., Simpson, E., Udry, S., Joshi, Y. C., West, R. G., Skillen, I., & Wilson, D. (2010a). Astrophysical Journal Letters, 714, L222.

    Article  ADS  Google Scholar 

  • Fossati, L., Bagnulo, S., Elmasli, A., Haswell, C. A., Holmes, S., Kochukhov, O., Shkolnik, E. L., Shulyak, D. V., Bohlender, D., Albayrak, B., Froning, C., & Hebb, L. (2010b). Astrophysical Journal, 720, 872.

    Article  ADS  Google Scholar 

  • Fossati, L., Haswell, C. A., Linsky, J. L., & Kislyakova, K. G. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 59). Heidelberg/New York: Springer.

    Google Scholar 

  • García Muñoz, A. (2007). Planetary and Space Science, 55, 1426.

    Article  ADS  Google Scholar 

  • Haswell, C. A., Fossati, L., Ayres, T., France, K., Froning, C. S., Holmes, S., Kolb, U. C., Busuttil, R., Street, R. A., Hebb, L., Collier Cameron, A., Enoch, B., Burwitz, V., Rodriguez, J., West, R. G., Pollacco, D., Wheatley, P. J., & Carter, A. (2012). Astrophysical Journal, 760, 79.

    Article  ADS  Google Scholar 

  • Hebb, L., Collier-Cameron, A., Loeillet, B., Pollacco, D., Hébrard, G., Street, R. A., Bouchy, F., Stempels, H. C., Moutou, C., Simpson, E., Udry, S., Joshi, Y. C., West, R. G., Skillen, I., Wilson, D. M., McDonald, I., Gibson, N. P., Aigrain, S., Anderson, D. R., Benn, C. R., Christian, D. J., Enoch, B., Haswell, C. A., Hellier, C., Horne, K., Irwin, J., Lister, T. A., Maxted, P., Mayor, M., Norton, A. J., Parley, N., Pont, F., Queloz, D., Smalley, B., & Wheatley, P. J. (2009). Astrophysical Journal, 693, 1920.

    Article  ADS  Google Scholar 

  • Ionov, D. E., Bisikalo, D. V., Kaygorodov, P. V., Shematovich, V. i. (2012). In M. T. Richards & I. Hubeny (Eds.), From interacting binaries to exoplanets: Essential modelling tools (IAU symposium, Vol. 282, pp. 545). Cambridge: Cambridge University Press

    Google Scholar 

  • Koskinen, T. T., Yelle, R. V., Lavvas, P., & Lewis, N. K. (2010). Astrophysical Journal, 723, 116.

    Article  ADS  Google Scholar 

  • Koskinen, T. T., Harris, M. J., Yelle, R. V., & Lavvas, P. (2013). Icarus 226, 1678.

    Article  ADS  Google Scholar 

  • Lai, D., Helling, C., & van den Heuvel, E. P. J. (2010). Astrophysical Journal, 721, 923.

    Article  ADS  Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1966). Hydrodynamik, Lehrbuch der theoretischen Physik. Berlin: Akademie-Verlag.

    Google Scholar 

  • Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G. E., Désert, J. M., Ferlet, R., Hébrard, G., Sing, D. K., Tchakoumegni, K. O., & Udry, S. (2010). Astronomy and Astrophysics, 514, A72.

    Google Scholar 

  • Li, S. L., Miller, N., Lin, D. N. C., & Fortney, J. J. (2010). Nature, 463, 1054.

    Article  ADS  Google Scholar 

  • Linsky, J. L., Yang, H., France, K., Froning, C. S., Green, J. C., Stocke, J. T., & Osterman, S. N. (2010). Astrophysical Journal, 717, 1291.

    Article  ADS  Google Scholar 

  • Lubow, S. H., & Shu, F. H. (1975). Astrophysical Journal, 198, 383.

    Article  ADS  Google Scholar 

  • Murray-Clay, R. A., Chiang, E. I., & Murray, N. (2009). Astrophysical Journal, 693, 23.

    Article  ADS  Google Scholar 

  • Pringle, J. E., & Wade, R. A. (1985). Interacting binary stars (Cambridge astrophysics series). Cambridge: Cambridge University Press.

    Google Scholar 

  • Savonije, G. J. (1979). Astronomy and Astrophysics, 71, 352.

    ADS  Google Scholar 

  • Verigin, M., Slavin, J., Szabo, A., Gombosi, T., Kotova, G., Plochova, O., Szegö, K., Tátrallyay, M., Kabin, K., & Shugaev, F. (2003). Journal of Geophysical Research, 108, 1323.

    Article  Google Scholar 

  • Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. (2003). Nature, 422, 143.

    Google Scholar 

  • Vidal-Madjar, A., Désert, J. M., Lecavelier des Etangs, A., Hébrard, G., Ballester, G. E., Ehrenreich, D., Ferlet, R., McConnell, J. C., Mayor, M., & Parkinson, C. D. (2004). Astrophysical Journal Letters, 604, L69.

    Google Scholar 

  • Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J. M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. (2008). Astrophysical Journal Letters, 676, L57.

    Google Scholar 

  • Vidotto, A. A., Jardine, M., Morin, J., Donati, J. F., Lang, P., & Russell, A. J. P. (2013). Astronomy and Astrophysics, 557, A67.

    Article  ADS  Google Scholar 

  • Vidotto, A. A., Bisikalo, D. V., Fossati, L., & Llama, J. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 153). Heidelberg/ New York: Springer.

    Google Scholar 

  • Withbroe, G. L. (1988). Astrophysical Journal, 325, 442.

    Article  ADS  Google Scholar 

  • Wood, B. E., Linsky, J. L., & Güdel, M. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 19). Heidelberg/New York: Springer.

    Google Scholar 

  • Yelle, R. V. (2004). Icarus, 170, 167.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the International Space Science Institute (ISSI) in Bern, Switzerland and the ISSI team Characterizing stellar- and exoplanetary environments and thank L. Fossati from the Argelander-Institut für Astronomie der Universität Bonn, Germany, Lotfi Ben-Jaffel from the Institut Astrophysique de Paris (IAP) CNRS-UPMC, Paris and Tommi Koskinen from the Lunar and Planetary Laboratory University of Arizona, Tucson, USA for fruitful discussions. The authors also acknowledge the support by the RFBR projects 12-02-00047 and 14-02-00215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Bisikalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bisikalo, D.V., Kaygorodov, P.V., Ionov, D.E., Shematovich, V.I. (2015). Types of Hot Jupiter Atmospheres. In: Lammer, H., Khodachenko, M. (eds) Characterizing Stellar and Exoplanetary Environments. Astrophysics and Space Science Library, vol 411. Springer, Cham. https://doi.org/10.1007/978-3-319-09749-7_5

Download citation

Publish with us

Policies and ethics