Skip to main content

Towards a Formal Library for Precise and Accurate Measurements

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8583))

Included in the following conference series:

  • 3541 Accesses

Abstract

Several software quality metrics have been proposed during the last decades to reduce risks and faultiness during software development. Despite these many efforts, most defined measurements fail to reach a satisfactory level of performance due to the ambiguities detected in the way their definitions are expressed and later on interpreted. The paper introduces a formal extension of a well-known library of measures named FLAME. While this library is expressed using the semi-formal language OCL (Object Constraint Language) upon the UML meta-model, our extension make use of formal methods to provide a more precise and accurate measurements by proposing a formal definitions of software metrics upon a formal expression of the UML metamodel. Unlike the original definition of the library, this extension supports formal proofs and guarantees a unique interpretation which allows the built of tools support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amirian, P., Alesheikh, A.A., Basiri, A.: Standard-based, interoperable services for accessing urban services data. Computer Environment and Urban Systems 34(4), 309–321 (2010)

    Article  Google Scholar 

  2. Amirian, P., Winstanley, A.C., Basiri, A.: Using Graph databases in LBS applications: Storing and Processing Navigational and Tracking data. In: Mobile Gehnt, Belgium (2013)

    Google Scholar 

  3. Basiri, A., Amirian, P., Winstanley, A.C.: The Use of Quick Response (QR) Codes in Landmark-Based Pedestrian Navigation. International Journal of Navigation and Observation (2014)

    Google Scholar 

  4. Basiri, A., Amirian, P., Winstanley, A.C., Kuntzsch, C., Sester, M.: Uncertainty han-dling in navigation services using rough and fuzzy set theory. In: Proceedings of the Third ACM SIGSPATIAL International Workshop on Querying and Mining Uncertain Spatio-Temporal Data, pp. 38–41 (2012)

    Google Scholar 

  5. Basiri, A., Winstanley, A.C., Amirian, P.: Landmark-based pedestrian navigation. In: 21st GIS Research UK (GISRUK) Conference, UK (2013)

    Google Scholar 

  6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Gruber, R.: Bigtable: A distributed stor-age system for structured data. In: Seventh Symposium on Operating System Design and Implementation (2006)

    Google Scholar 

  7. Tom, A., Denis, M.: Referring to Landmark or Street Information in Route Directions: What Difference Does It Make? In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 362–374. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Elias, B.: Determination of Landmarks and Reliability Criteria for Landmarks. Technical Paper, ICA Commission on Map Generalization, 5th Workshop on Progress in Automated Map Generalization. IGN, Paris, France (2003)

    Google Scholar 

  9. Etienne, S., Séguinot, V.: Navigation by Dead Reckoning and Local Cues. Journal of Navigation 46, 364–370 (1993), doi:10.1017/S0373463300011802.

    Article  Google Scholar 

  10. Fang, Z., Li, Q., Zhang, X., Shaw, S.L.: A GIS data model for landmark-based pe-destrian navigation. International Journal of Geographical Information Science (2011), doi:10.1080/13658816.2011.615749

    Google Scholar 

  11. Fontaine, S., Denis, M.: The Production of Route Instructions in Underground and Urban Environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 83–94. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Fowler, M., Sadalage, P.: NoSQL distilled: a brief guide to the emerging world of polyglot persistence. Addison-Wesley Publication (2012)

    Google Scholar 

  13. Gaisbauer, C., Frank, A.U.: Wayfinding Model for Pedestrian Navigation. In: The AGILE International Conference on Geographic Information Science, pp. 1–9 (2008)

    Google Scholar 

  14. Hecht, R., Jablonski, S.: NoSQL Evaluation A Use Case Oriented Survey. In: International Conference on Cloud and Service Computing, pp. 336–341 (2011)

    Google Scholar 

  15. Hansen, R., Wind, R., Jensen, C.S., Thomsen, B.: Seamless Indoor/Outdoor Positioning Handover for Location-Based Services in Streamspin. In: Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, pp. 267–272 (2009)

    Google Scholar 

  16. Holm, S.: Hybrid ultrasound-RFID indoor positioning: Combining the best of both worlds. In: IEEE Int. Conf. RFID, Orlando, FL, pp. 155–162 (2009)

    Google Scholar 

  17. Hung, J.C.: The smart-travel system: utilising cloud services to aid traveller with personalised requirement. IJWGS 8(3), 279–303 (2012)

    Article  Google Scholar 

  18. Karimi, H.: Universal Navigation on Smartphones. Springer (2011) ISBN-10: 1441977406

    Google Scholar 

  19. Lee, J.K., Grejner-Brzezinska, D.A., Toth, C.: Network-based Collaborative Navigation in GPS-Denied Environment. Journal of Navigation 65, 445–457 (2012), doi:10.1017/S0373463312000069.

    Article  Google Scholar 

  20. Li, X., Wang, J., Li, T.: Seamless Positioning and Navigation by Using Geo-Referenced Images and Multi- Sensor Data. Journal of Sensors 13(7), 9047–9069 (2013)

    Article  Google Scholar 

  21. Lynch, K.: The image of the city, p. 48. MIT Press (1960)

    Google Scholar 

  22. May, A.J., Ross, T., Bayer, S.H.: Incorporating Landmarks in Driver Navigation System Design: An Overview of Results from the REGIONAL Project. Journal of Navigation 58, 47–65 (2005), doi:10.1017/S0373463304003054.

    Article  Google Scholar 

  23. Michon, P.-E., Denis, M.: When and Why Are Visual Landmarks Used in Giving Directions? In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 292–305. Springer, Heidelberg (2001)

    Google Scholar 

  24. Millonig, A., Schechtner, K.: Developing Landmark-based Pedestrian Navigation Systems. In: Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 196–202 (2005) 0-7803-9215-9/05

    Google Scholar 

  25. Pielot, M., Boll, S.: “In Fifty Metres Turn Left”: Why Turn-by-turn Instructions Fail Pedestrians, Haptic, Audio and Visual Interfaces for Maps and Location Based Services (2010)

    Google Scholar 

  26. Raubal, M., Winter, S.: Enriching Wayfinding Instructions with Local Landmarks. In: Egenhofer, M., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 243–259. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Redish, D.: Beyond the cognitive map: from place cells to episodic memory. MIT, Cambridge (1999)

    Google Scholar 

  28. Schechtner, M.K.: Developing Landmark-based Pedestrian Navigation Systems. In: Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, Vienna (2005)

    Google Scholar 

  29. Siegel, W., White, S.H.: The Development of Spatial Representations of Large-scale Environments. In: Reese, H.W. (ed.) Advances in Child Development and Behaviour, vol. 10, pp. 9–55. Academic Press, New York (1975)

    Google Scholar 

  30. Schoier, G., Borruso, G.: Spatial Data Mining for Highlighting Hotspots in Personal Navigation Routes. IJDWM 8(3), 45–61 (2012)

    Google Scholar 

  31. Tiwari, S.: Professional NoSQL. Wrox Publication (2011)

    Google Scholar 

  32. Vepa, R.: Ambulatory Position Tracking of Prosthetic Limbs Using Multiple Satellite Aided Inertial Sensors and Adaptive Mixing. Journal of Navigation 64, 295–310 (2011), doi:10.1017/S0373463310000494

    Article  Google Scholar 

  33. Werner, S., Krieg-Brückner, B., Mallot, H., Schweizer, K., Freksa, C.: Spatial Cogni-tion: The Role of Landmark, Route and Survey Knowledge in Human and Robot Navigation. In: Jarke, M., Pasedach, K., Pohl, K. (eds.) Informatik aktuell, pp. 41–50. Springer, Berlin (1997)

    Google Scholar 

  34. Xiang, P., Hou, R., Zhou, Z.: Cache and consistency in NoSQL. In: 3rd IEEE International Conference on Computer Science and Information Technology, pp. 117–120 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lamrani, M., El Amrani, Y., Ettouhami, A. (2014). Towards a Formal Library for Precise and Accurate Measurements. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8583. Springer, Cham. https://doi.org/10.1007/978-3-319-09156-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09156-3_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09155-6

  • Online ISBN: 978-3-319-09156-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics