Skip to main content

Musical Rhythm Embedded in the Brain: Bridging Music, Neuroscience, and Empirical Aesthetics

  • Chapter
  • First Online:

Abstract

Entrainment to music seems ubiquitous in human cultures. The impact of musical features on individuals has already been explored extensively in music theory, anthropology and psychology. In contrast, it is a relatively new field in neuroscience. Recently, a wave of neuroscience research has grown up exploring the interaction with music in both human and non-human brains, and in evolutionary terms. This chapter briefly reviews some of the biological evidence of music processing, particularly focusing on how the human brain interacts with musical rhythm. The neural entrainment to musical rhythm is proposed as a model particularly well-suited to address objectively, within an experimental set up, how biological rules shape music perception within a limited range of complexity. However, these limits are not fixed. Other aspects such as familiarity, culture, training and context continuously shape brain responses to rhythms and to music in general. Taken together, these studies propose answers to the question of how natural and cultural constraints shape each other, building a vivid motor of aesthetic evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arom, S. (2000). Prolegomena to a biomusicology. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 27–29). Cambridge, MA: MIT Press.

    Google Scholar 

  • Berlyne, D. E. (1971). Aesthetics and psychobiology. New York: Appleton.

    Google Scholar 

  • Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11818–11823.

    Article  Google Scholar 

  • Bruner, G. C. (1990). Music, mood, and marketing. Journal of Marketing, 54(4), 94–104.

    Article  Google Scholar 

  • Chemin, B., Mouraux, A., & Nozaradan, S. (2014). Body movement shapes selectively the neural representation of musical rhythms. Psychological Science, 25(12), 2147–2159.

    Article  Google Scholar 

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18, 2844–2854.

    Article  Google Scholar 

  • Fitch, W. T. (2006). The biology and evolution of music: A comparative perspective. Cognition, 100, 173–215.

    Article  Google Scholar 

  • Grahn, J. A. (2012). Neural mechanisms of rhythm perception: Current findings and future perspectives. Topics in Cognitive Science, 4(4), 585–606.

    Article  Google Scholar 

  • Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893–906.

    Article  Google Scholar 

  • Hagen, E. H., & Bryant, G. A. (2003). Music and dance as a coalition signaling system. Human Nature, 14, 21–51.

    Article  Google Scholar 

  • Hannon, E. E., & Johnson, S. P. (2005). Infants use meter to categorize rhythms and melodies: Implications for musical structure learning. Cognitive Psychology, 50(4), 354–377.

    Article  Google Scholar 

  • Hannon, E. E., & Trehub, S. E. (2005). Metrical categories in infancy and adulthood. Psychological Science, 16(1), 48–55.

    Article  Google Scholar 

  • Hove, M. J., & Risen, J. L. (2009). It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27(6), 949–961.

    Article  Google Scholar 

  • Iyer, V. (2002). Embodied mind, situated cognition, and expressive microtiming in African-American music. Music Perception, 19(3), 387–414.

    Article  Google Scholar 

  • Janata, P., Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology General, 141(1), 54–75.

    Article  Google Scholar 

  • Kirschner, S., & Tomasello, M. (2009). Joint drumming: Social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299–314.

    Article  Google Scholar 

  • Langer, S. (1942). Philosophy in a new key. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Leman, M. (2008). Embodied music and mediation technology. Cambridge, MA: MIT Press.

    Google Scholar 

  • London, J. (2004). Hearing in time: Psychological aspects of musical meter. London: Oxford University Press.

    Book  Google Scholar 

  • McDermott, J. H. (2012). Auditory preferences and aesthetics: Music, voices, and everyday sounds. In R. Sharot & T. Dolan (Eds.), Neuroscience of preference and choice (pp. 227–256). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Merchant, H., & Honing, H. (2014). Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Frontiers in Neuroscience, 17(7), 274.

    Google Scholar 

  • Nelson, K. (1985). The art of reciting the Qur’an. Austin: University of Texas Press.

    Google Scholar 

  • North, A. C., Hargreaves, D. J., & O’Neill, S. A. (2000). The importance of music to adolescents. British Journal of Educational Psychology, 70, 255–272.

    Article  Google Scholar 

  • North, A. C., Shilcock, A., & Hargreaves, D. J. (2003). The effect of musical style on restaurant customers’ spending. Environment and Behavior, 35, 712–718.

    Article  Google Scholar 

  • Nozaradan, S. (2014). Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philosophical Transaction B, 369(1658), 20130393.

    Article  Google Scholar 

  • Nozaradan, S., Peretz, I., & Keller, P. E. (2016). Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Scientific Reports, 6, 20612. doi:10.1038/srep20612.

    Article  Google Scholar 

  • Nozaradan, S., Peretz, I., Missal, M., & Mouraux, M. (2011). Tagging the neuronal entrainment to beat and meter. The Journal of Neuroscience, 31, 10234–10240.

    Article  Google Scholar 

  • Nozaradan, S., Peretz, I., & Mouraux, A. (2012a). Selective neuronal entrainment to beat and meter embedded in a musical rhythm. The Journal of Neuroscience, 32, 17572–17581.

    Article  Google Scholar 

  • Nozaradan, S., Peretz, I., & Mouraux, A. (2012b). Steady-state evoked potentials as an index of multisensory temporal binding. NeuroImage, 60, 21–28.

    Article  Google Scholar 

  • Nozaradan, S., Zerouali, Y., Peretz, I., & Mouraux, A. (2015). Capturing with EEG the neuronal entrainment and coupling underlying sensorimotor integration while moving to the beat. Cerebral Cortex, 25(3), 736–747.

    Article  Google Scholar 

  • Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG (2nd ed.). New York: Oxford University Press.

    Book  Google Scholar 

  • Patel, A. D. (2006). Musical rhythm, linguistic rhythm, and human evolution. Music Perception, 24, 99–104.

    Article  Google Scholar 

  • Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.

    Google Scholar 

  • Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19, 827–830.

    Article  Google Scholar 

  • Peretz, I., & Zatorre, R. J. (Eds.). (2003). The cognitive neuroscience of music. New York: Oxford University Press.

    Google Scholar 

  • Phillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception, 28, 3–14.

    Article  Google Scholar 

  • Phillips-Silver, J., & Keller, P. E. (2012). Searching for roots of entrainment and joint action in early musical interactions. Frontiers in Human Neuroscience, 6, 26.

    Article  Google Scholar 

  • Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308(5727), 1430–1430.

    Article  Google Scholar 

  • Phillips-Silver, J., & Trainor, L. J. (2007). Hearing what the body feels: Auditory encoding of rhythmic movement. Cognition, 105, 533–546.

    Article  Google Scholar 

  • Pinker, S. (1997). How the mind works. New York: Norton.

    Google Scholar 

  • Pressing, J. (2002). Black Atlantic rhythm: Its computational and transcultural foundations. Music Perception, 19(3), 285–310.

    Article  Google Scholar 

  • Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier.

    Google Scholar 

  • Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.

    Article  Google Scholar 

  • Sacks, O. (2008). Musicophilia: Tales of music and the brain. New York: Vintage Books.

    Google Scholar 

  • Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–262.

    Article  Google Scholar 

  • Schnupp, J., Nelken, I., & King, A. (2010). Auditory neuroscience: Making sense of sound. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Schubotz, R. I., Friederici, A. D., & von Cramon, D. Y. (2000). Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. NeuroImage, 11(1), 1–12.

    Article  Google Scholar 

  • Todd, N. P., Lee, C. S., & O’Boyle, D. J. (2002). A sensorimotor theory of temporal tracking and beat induction. Psychological Research, 66(1), 26–39.

    Article  Google Scholar 

  • Van Noorden, L., & Moelants, D. (1999). Resonance in the perception of musical pulse. Journal of New Music Research, 28, 43–66.

    Article  Google Scholar 

  • Wallin, N. L., Merker, B., & Brown, S. (Eds.). (2000). The origins of music. Cambridge, MA: MIT Press.

    Google Scholar 

  • Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences, 106(7), 2468–2471.

    Article  Google Scholar 

  • Witek, M. (2012). Groove experience: Emotional and physiological responses to groove-based music. Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music (ESCOM 2009), Jyväskylä, Finland.

    Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.

    Article  Google Scholar 

  • Zentner, M., & Eerola, T. (2010). Rhythmic engagement with music in infancy. Proceedings of the National Academy of Sciences, 107(13), 5768–5773.

    Article  Google Scholar 

Download references

Acknowledgements

The author is supported by the Australian Research Council (DE160101064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Nozaradan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nozaradan, S. (2017). Musical Rhythm Embedded in the Brain: Bridging Music, Neuroscience, and Empirical Aesthetics. In: Ateca-Amestoy, V., Ginsburgh, V., Mazza, I., O'Hagan, J., Prieto-Rodriguez, J. (eds) Enhancing Participation in the Arts in the EU. Springer, Cham. https://doi.org/10.1007/978-3-319-09096-2_7

Download citation

Publish with us

Policies and ethics