Skip to main content

Nested Space Mapping Technique for Design and Optimization of Complex Microwave Structures with Enhanced Functionality

  • Conference paper
  • First Online:
Solving Computationally Expensive Engineering Problems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 97))

Abstract

In this work, we discuss a robust simulation-driven methodology for rapid and reliable design of complex microwave/RF circuits with enhanced functionality. Our approach exploits nested space mapping (NSM) technology, which is dedicated to expedite simulation-driven design optimization of computationally demanding microwave structures with complex topologies. The enhanced functionality of the developed circuits is achieved by means of slow-wave resonant structures (SWRSs), used as replacement components for conventional transmission lines. The NSM is a hierarchical, bottom-up methodology, in which the inner space mapping layer is applied to improve generalization capabilities of the equivalent circuit constructed on the SWRS level, whereas the outer layer is used to enhance the surrogate model of the entire structure of interest. We demonstrate that the NSM significantly improves the performance of traditional surrogate-based optimization routines applied to the design problem of computationally expensive microwave/RF structures with modular topology. The proposed technique is used to design three exemplary microwave/RF circuits with enhanced functionality: two abbreviated microstrip matching transformers and a miniaturized rat-race coupler with harmonic suppression. We also provide a comprehensive comparison with other surrogate-assisted methods, as well as supply the reader with basic design guidelines for the state-of-the-art SWRS-based microwave/RF circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, S.-B., Jiao, Y.-C., Wang, W., Zhang, F.-S.: Modified T-shaped planar monopole antennas for multiband operation. IEEE Trans. Microw. Theory Tech. 54, 3267–3270 (2006)

    Article  Google Scholar 

  2. Xu, J., Miao, C., Cui, L., Ji, Y.-X., Wu, W.: Compact high isolation quad-band bandpass filter using quad-mode resonator. Electron. Lett. 48, 28–30 (2012)

    Article  Google Scholar 

  3. Liu, H.-W., Wang, Y., Wang, X.-M., Lei, J.-H., Xu, W.-Y., Zhao, Y.-L., Ren, B.-P., Guan, X.-H.: Compact and high selectivity tri-band bandpass filter using multimode stepped-impedance resonator. IEEE Microw. Wirel. Compon. Lett. 23, 536–538 (2013)

    Article  Google Scholar 

  4. Rodenbeck, C.T., Sang-Gyu, K., Wen-Hua, T., Coutant, M.R., Seungpyo, H., Mingyi, L., Kai, C.: Ultra-wideband low-cost phased-array radars. IEEE Trans. Microw. Theory Tech. 53, 3697–3703 (2005)

    Article  Google Scholar 

  5. Kuo, T.-N., Lin, S.-C., Chen, C.H.: Compact ultra-wideband bandpass filters using composite microstrip-coplanar-waveguide structure. IEEE Trans. Microw. Theory Tech. 54, 3772–3778 (2006)

    Article  Google Scholar 

  6. An-Shyi, L., Huang, T.-Y., Wu, R.-B.: A dual wideband filter design using frequency mapping and stepped-impedance resonators. IEEE Trans. Microw. Theory Tech. 56, 2921–2929 (2008)

    Article  Google Scholar 

  7. Zhang, X.-Y., Xue, Q.: High-selectivity tunable bandpass filters with harmonic suppression. IEEE Trans. Microw. Theory Tech. 58, 964–969 (2010)

    Article  Google Scholar 

  8. Sun, S., Zhu, L.: Periodically nonuniform coupled microstrip-line filters with harmonic suppression using transmission zero reallocation. IEEE Trans. Microw. Theory Tech. 53, 1817–1822 (2005)

    Article  Google Scholar 

  9. Ngoc-Anh, N., Ahmad, R., Yun-Taek, I., Yong-Sun, S., Seong-Ook, P.: A T-shaped wide-slot harmonic suppression antenna. IEEE Antennas Wirel. Propag. Lett. 6, 647–650 (2007)

    Article  Google Scholar 

  10. Deng, C., Li, P., Cao, W.: A high-isolation dual-polarization patch antenna with omnidirectional radiation patterns. IEEE Antennas Wirel. Propag. Lett. 11, 1273–1276 (2012)

    Article  Google Scholar 

  11. Zeng, S.-J., Wu, J.-Y., Tu, W.-H.: Compact and high-isolation quadruplexer using distributed coupling technique. IEEE Microw. Wirel. Compon. Lett. 21, 197–199 (2011)

    Article  Google Scholar 

  12. Chappell, W.J., Little, M.P., Katehi, L.P.B.: High isolation, planar filters using EBG substrates. IEEE Microw. Wirel. Compon. Lett. 11, 246–248 (2001)

    Article  Google Scholar 

  13. Hee-Ran, A., Itoh, T.: New isolation circuits of compact impedance-transforming 3-dB baluns for theoretically perfect isolation and matching. IEEE Trans. Microw. Theory Tech. 58, 3892–3902 (2010)

    Google Scholar 

  14. Hee-Ran, A., Sangwook, N.: Compact microstrip 3-dB coupled-line ring and branch-line hybrids with new symmetric equivalent circuits. IEEE Trans. Micro. Theory Tech. 61, 1067–1078 (2013)

    Article  Google Scholar 

  15. Tao, Y., Pei-Ling, C., Itoh, T.: Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer. IEEE Trans. Microw. Theory Tech. 59, 260–269 (2011)

    Article  Google Scholar 

  16. Milligan, T.A.: Modern Antenna Design, 2nd edn. Wiley, New York (2005)

    Book  Google Scholar 

  17. Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, New York (2012)

    Google Scholar 

  18. Azadegan, R., Sarabandi, K.: Bandwidth enhancement of miniaturized slot antennas using folded, complementary, and self-complementary realizations. IEEE Trans. Antennas Propag. 55, 2435–2444 (2007)

    Article  Google Scholar 

  19. Ruiz-Cruz, J.A., Yunchi, Z., Zaki, K.A., Piloto, A.J., Tallo, J.: Ultra-wideband LTCC ridge waveguide filters. IEEE Microw. Wirel. Compon. Lett. 17, 115–117 (2007)

    Article  Google Scholar 

  20. Hou, J.-A., Wang, Y.-H.: Design of compact 90° and 180° couplers with harmonic suppression using lumped-element bandstop resonators. IEEE Trans. Microw. Theory Tech. 58, 2932–2939 (2010)

    Article  MathSciNet  Google Scholar 

  21. Chen, W.-L., Wang, G.-M.: Exact design of novel miniaturised fractal-shaped branch-line couplers using phase-equalising method. IET Microw. Antennas Propag. 2, 773–780 (2008)

    Article  Google Scholar 

  22. Kaymaram, F., Shafai, L.: Enhancement of microstrip antenna directivity using double-superstrate configurations. Can. J. Electr. Comput. Eng. 32, 77–82 (2007)

    Article  Google Scholar 

  23. Opozda, S., Kurgan, P., Kitlinski, M.: A compact seven-section rat-race hybrid coupler incorporating PBG cells. Microw. Opt. Technol. Lett. 51, 2910–2913 (2009)

    Article  Google Scholar 

  24. Kurgan, P., Kitlinski, M.: Novel doubly perforated broadband microstrip branch-line couplers. Microw. Opt. Technol. Lett. 51, 2149–2152 (2009)

    Article  Google Scholar 

  25. Tseng, C.-H., Chen, H.-J.: Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microw. Wirel. Compon. Lett. 18, 734–736 (2008)

    Article  Google Scholar 

  26. Kurgan, P., Bekasiewicz, A., Pietras, M., Kitlinski, M.: Novel topology of compact coplanar waveguide resonant cell low-pass filter. Microw. Opt. Technol. Lett. 54, 732–735 (2012)

    Article  Google Scholar 

  27. Bekasiewicz, A., Kurgan, P., Kitlinski, M.: A new approach to a fast and accurate design of microwave circuits with complex topologies. IET Microw. Antennas Propag. 6, 1616–1622 (2012)

    Article  Google Scholar 

  28. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  29. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56, 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bakr, M.H., Nikolova, N.K.: An adjoint variable method for time domain TLM with wideband Johns matrix boundaries. IEEE Trans. Microw. Theory Tech. 52, 678–685 (2004)

    Article  Google Scholar 

  31. Chung, Y.S., Cheon, C., Park, I.H., Hahn, S.Y.: Optimal design method for microwave device using time domain method and design sensitivity analysis-part II: FDTD case. IEEE Trans. Magn. 37, 3255–3259 (2001)

    Article  Google Scholar 

  32. El Sabbagh, M.A., Bakr, M.H., Bandler, J.W.: Adjoint higher order sensitivities for fast full-wave optimization of microwave filters. IEEE Trans. Microw. Theory Tech. 54, 3339–3351 (2006)

    Article  Google Scholar 

  33. Koziel, S., Mosler, F., Reitzinger, S., Thoma, P.: Robust microwave design optimization using adjoint sensitivity and trust regions. Int. J. RF Microw. Comput. Aid. Eng. 22, 10–19 (2012)

    Article  Google Scholar 

  34. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  35. Talbi, E.-G.: Metaheuristics – From Design to Implementation. Wiley, Chichester (2009)

    MATH  Google Scholar 

  36. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  37. Echeverría, D., Hemker, P.W.: Manifold mapping: a two-level optimization technique. Comput. Vis. Sci. 11, 193–206 (2008)

    Article  MathSciNet  Google Scholar 

  38. Koziel, S., Leifsson, L., Ogurtsov, S.: Reliable EM-driven microwave design optimization using manifold mapping and adjoint sensitivity. Microw. Opt. Technol. Lett. 55, 809–813 (2013)

    Article  Google Scholar 

  39. Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microw. Theory Tech. 58, 2829–2837 (2010)

    Article  Google Scholar 

  40. Leifsson, L., Koziel, S.: Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction. J. Comput. Sci. 1, 98–106 (2010)

    Article  Google Scholar 

  41. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microw. Magazine 9, 105–122 (2008)

    Article  Google Scholar 

  42. Koziel, S., Bandler, J.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microw. Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  43. Koziel, S., Bekasiewicz, A., Zieniutycz, W.: Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces. IEEE Antennas Wirel. Propag. Lett. 13, 631–634 (2014)

    Article  Google Scholar 

  44. Redhe, M., Nilsson, L.: Optimization of the new Saab 9-3 exposed to impact load using a space mapping technique. Struct. Multidiscip. Optim. 27, 411–420 (2004)

    Google Scholar 

  45. Crevecoeur, G., Dupre, L., Van de Walle, R.: Space mapping optimization of the magnetic circuit of electrical machines including local material degradation. IEEE Trans. Magn. 43, 2609–2611 (2007)

    Article  Google Scholar 

  46. Encica, L., Makarovic, J., Lomonova, E.A., Vandenput, A.J.A.: Space mapping optimization of a cylindrical voice coil actuator. IEEE Trans. Ind. Appl. 42, 1437–1444 (2006)

    Article  Google Scholar 

  47. Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A.: Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microw. Theory Tech. 52, 378–385 (2004)

    Article  Google Scholar 

  48. Cheng, Q.S., Bandler, J.W., Koziel, S.: Combining coarse and fine models for optimal design. IEEE Microw. Magazine 9, 79–88 (2008)

    Article  Google Scholar 

  49. Koziel, S., Bandler, J.W., Cheng, Q.S.: Constrained parameter extraction for microwave design optimisation using implicit space mapping. IET Microw. Antennas Propag. 5, 1156–1163 (2011)

    Article  Google Scholar 

  50. Kurgan, P., Bekasiewicz, A.: A robust design of a numerically demanding compact rat-race coupler. Microw. Opt. Technol. Lett. 56, 1259–1263 (2014)

    Article  Google Scholar 

  51. Koziel, S., Bekasiewicz, A., Kurgan, P.: Rapid EM-driven design of compact RF circuits by means of nested space mapping. IEEE Microw. Wirel. Compon. Lett. 24(6), 364–366 (2014)

    Article  Google Scholar 

  52. Awida, M.A., Safwat, A.M.E., El-Hennawy, H.: Compact rat-race hybrid coupler using meander space-filling curves. Microw. Opt. Technol. Lett. 48, 606–609 (2006)

    Article  Google Scholar 

  53. Eccleston, K.W., Ong, S.H.M.: Compact planar microstrip line branch-line and rat-race couplers. IEEE Trans. Microw. Theory Tech. 51, 2119–2125 (2003)

    Article  Google Scholar 

  54. Kurgan, P., Kitlinski, M.: Doubly miniaturized rat-race hybrid coupler. Microw. Opt. Technol. Lett. 53, 1242–1244 (2011)

    Article  Google Scholar 

  55. Kurgan, P., Kitlinski, M.: Novel microstrip low-pass filters with fractal defected ground structures. Microw. Opt. Technol. Lett. 51, 2473–2477 (2009)

    Article  Google Scholar 

  56. Wen, W., Lu, Y., Fu, J.S., Yong, Z.X.: Particle swarm optimization and finite-element based approach for microwave filter design. IEEE Trans. Magnetics 41, 1800–1803 (2005)

    Article  Google Scholar 

  57. Lai, M.-I., Jeng, S.-K.: Compact microstrip dual-band bandpass filters design using genetic-algorithm techniques. IEEE Trans. Microw. Theory Tech. 54, 160–168 (2006)

    Article  Google Scholar 

  58. Chen, C.-F., Lin, C.-Y., Weng, J.-H., Tsai, K.-L.: Compact microstrip broadband filter using multimode stub-loaded resonator. Electron. Lett. 49, 545–546 (2013)

    Article  Google Scholar 

  59. Meissner, P., Kitlinski, M.: A 3-dB multilayer coupler with UC-PBG structure. IEEE Microw. Wirel. Compon. Lett. 15, 52–54 (2005)

    Article  Google Scholar 

  60. Lin, B.-Q., Zheng, Q.-R., Yuan, N.-C.: A novel planar PBG structure for size reduction. IEEE Microw. Wirel. Compon. Lett. 16, 269–271 (2006)

    Article  MATH  Google Scholar 

  61. Hong, J.-S., Lancaster, M.J.: Theory and experiment of novel microstrip slow-wave open-loop resonator filters. IEEE Trans. Microw. Theory Tech. 45, 2358–2365 (1997)

    Article  Google Scholar 

  62. García-García, J., Bonache, J., Gil, I., Martín, F., Marqués, R., Falcone, F., Lopetegi, T., Laso, M.A.G., Sorolla, M.: Comparison of electromagnetic band gap and split-ring resonator microstrip lines as stop band structures. Microw. Opt. Technol. Lett. 44, 376–379 (2005)

    Article  Google Scholar 

  63. Zhang, F.: High-performance rat-race hybrid ring for RF communication using MEBE-on-microstrip technology. Microw. Opt. Technol. Lett. 51, 1539–1542 (2009)

    Article  Google Scholar 

  64. Nanbo, J., Rahmat-Samii, Y.: Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics. IEEE Trans. Antennas Propag. 58, 3786–3794 (2010)

    Article  Google Scholar 

  65. Lai, M.-I., Jeng, S.-K.: A microstrip three-port and four-channel multiplexer for WLAN and UWB coexistence. IEEE Trans. Microw. Theory Tech. 53, 3244–3250 (2005)

    Article  Google Scholar 

  66. Nishino, T., Itoh, T.: Evolutionary generation of microwave line-segment circuits by genetic algorithms. IEEE Trans. Microw. Theory Tech. 50, 2048–2055 (2002)

    Article  Google Scholar 

  67. Smierzchalski, M., Kurgan, P., Kitlinski, M.: Improved selectivity compact band-stop filter with Gosper fractal-shaped defected ground structures. Microw. Opt. Technol. Lett. 52(1), 227–232 (2010)

    Article  Google Scholar 

  68. Zhang, C.F.: Planar rat-race coupler with microstrip electromagnetic bandgap element. Microw. Opt. Technol. Lett. 53, 2619–2622 (2011)

    Google Scholar 

  69. Bekasiewicz, A., Kurgan, P.: A compact microstrip rat-race coupler constituted by nonuniform transmission lines. Microw. Opt. Technol. Lett. 56, 970–974 (2014)

    Article  Google Scholar 

  70. Matthaei, G., Jones, E.M.T., Young, L.: Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech House, Norwood (1980)

    Google Scholar 

  71. Hong, J.-S., Lancaster, M.J.: Microstrip Filters for RF/Microwave Applications. Wiley, Hoboken (2001)

    Book  Google Scholar 

  72. Kurgan, P., Kitlinski, M.: Slow-wave fractal-shaped compact microstrip resonant cell. Microw. Opt. Technol. Lett. 52, 2613–2615 (2010)

    Article  Google Scholar 

  73. Kurgan, P., Filipcewicz, J., Kitlinski, M.: Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction. IET Microw. Antennas Propag. 6, 1291–1298 (2012)

    Article  Google Scholar 

  74. Kurgan, P., Filipcewicz, J., Kitlinski, M.: Design considerations for compact microstrip resonant cells dedicated to efficient branch-line miniaturization. Microw. Opt. Technol. Lett. 54, 1949–1954 (2012)

    Article  Google Scholar 

  75. Bekasiewicz, A., Koziel, S.: Local–global space mapping for rapid EM-driven design of compact RF structures. Int. Conf. Microw. Radar Wirel. Commun. 1, 313–316 (2014)

    Google Scholar 

  76. Koziel, S., Kurgan, P.: Low-cost optimization of compact branch-line couplers and its application to miniaturized Butler matrix design. Eur. Microw. Conf. Rome, Italy, Oct. 5–10, (2014)

    Google Scholar 

  77. Koziel, S., Echeverría-Ciaurri, D., Leifsson, L.: Simulation-driven design in microwave engineering: methods. In: Koziel, S., Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Series: Studies in Computational Intelligence, pp. 33–60. Springer, New York (2011)

    Google Scholar 

  78. Cheng, Q.S., Rautio, J.C., Bandler, J.W., Koziel, S.: Progress in simulator-based tuning—the art of tuning space mapping [application notes]. IEEE Microw. Magazine 11, 96–110 (2010)

    Article  Google Scholar 

  79. Bandler, J.W., Cheng, Q.S., Hailu, D.M., Nikolova, N.K.: A space-mapping design framework. IEEE Trans. Microw. Theory Tech. 52, 2601–2610 (2004)

    Article  Google Scholar 

  80. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  81. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  82. Koziel, S., Echeverría-Ciaurri, D., Leifsson, L.: Surrogate-based methods. In: Koziel, S. Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Series: Studies in Computational Intelligence, pp. 33–60. Springer, New York (2011)

    Google Scholar 

  83. Koziel, S., Leifsson, L., Ogurtsov, S.: Space mapping for electromagnetic-simulation-driven design optimization. In: Koziel, S. Leifsson, L. (eds.) Surrogate-Based Modeling and Optimization: Applications in Engineering, pp. 1–25. Springer, New York (2013)

    Google Scholar 

  84. CST Microwave Studio, ver. 2013.: CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2013)

    Google Scholar 

  85. Agilent ADS, ver. 2011.10: Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Slawomir Koziel or Adrian Bekasiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Koziel, S., Bekasiewicz, A., Kurgan, P. (2014). Nested Space Mapping Technique for Design and Optimization of Complex Microwave Structures with Enhanced Functionality. In: Koziel, S., Leifsson, L., Yang, XS. (eds) Solving Computationally Expensive Engineering Problems. Springer Proceedings in Mathematics & Statistics, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-08985-0_3

Download citation

Publish with us

Policies and ethics