Skip to main content

Vibration Surveillance System with Variable Stiffness Holder for Milling Flexible Details

  • Conference paper
  • First Online:
Applied Non-Linear Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 93))

Abstract

Efficient milling of the flexible details (i.e. rotor blades, thin-walled elements) using slender ball-end tools is a difficult task due to possibility of vibration occurrence. Because of the existence of certain conditions (small depths of cutting, regeneration phenomena), cutting process may lose stability and self-excited chatter vibration may appear. Frequency of the chatter vibration is close to dominant natural frequency of the workpiece or the tool. One of the methods of chatter vibration avoidance is matching the spindle speed to the optimal phase shift between subsequent cutting edge passes (i.e. the Liao–Young condition). In previous works the authors successfully implemented the idea of optimal speeds map where optimal speed was calculated for every point of the machined surface based on the dominant natural frequencies for local areas. During milling, spindle speed was set according to the map. However, changing spindle speed during tool pass may reduce surface quality in speed change point and is difficult to perform it in some milling centres. The article presents the idea of a new workpiece holder with adjustable stiffness. Milling process will be performed with constant spindle and feed speed. In order to avoid vibration, stiffness of the specially designed workpiece holder will be modified off-line. Stiffness changes modify natural frequencies of the workpiece and thus, it is possible to modify dynamic properties of the workpiece in such a way that arbitrary chosen, constant spindle speed will be optimal, due to the Liao–Young condition performance. This will need calculation of the optimal stiffness map (referred to different spindle speeds), which will be performed before milling based on the workpiece’s modal identification results and Finite Element Model simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalinski, K.J.: Modelling and investigation of vibration surveillance during ball end milling of curved flexible details. In: Uhl, T. (ed.) Chosen Problems of the Modal Analysis of Mechanical Structures, pp. 91–99. The Publication of AGH, Cracow (2006)

    Google Scholar 

  2. Kaliński, K.J.: A Surveillance of Dynamic Processes in Mechanical Systems (in Polish). Gdańsk University of Technology Publishers, Gdańsk (2012)

    Google Scholar 

  3. Kaliński, K.J., Chodnicki, M.: Vibration surveillance during ball end milling of curved flexible details on a basis of assessment of assurance of the model of real object. In: Cieśliński, J.T., Barylski, A. (eds.) Developments in mechanical engineering, vol. 3, pp. 117–124. Gdańsk University of Technology Publishers, Gdańsk (2009)

    Google Scholar 

  4. Kaliński, K.J., Galewski, M.A.: Chatter vibration surveillance by the optimal-linear spindle speed control. Mech. Syst Signal Process. 25(1), 383–399 (2011)

    Article  Google Scholar 

  5. Kalinski, K.J., Mazur, M., Galewski, M.A.: The optimal spindle speed map for reduction of chatter vibration during milling of bow thruster blade. Solid State Phenom. 198, 686–691 (2013)

    Article  Google Scholar 

  6. Kalinski, K.J., Mazur, M., Galewski, M.: High speed milling vibration surveillance with the use of the map of optimal spindle speeds. In: Proceedings of the 8th International Conference on High Speed Machining, Metz, France, 2010

    Google Scholar 

  7. Liao, Y.S., Young, Y.C.: A new on-line spindle speed regulation strategy for chatter control. Int. J. Mach. Tools Manuf. 36, 651–660 (1996)

    Article  Google Scholar 

  8. Tomkow, J.: Vibrostability of Machine Tools (in Polish). The Scientific and Technical Publications, Warsaw (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof J. Kaliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kaliński, K.J., Chodnicki, M., Mazur, M.R., Galewski, M.A. (2014). Vibration Surveillance System with Variable Stiffness Holder for Milling Flexible Details. In: Awrejcewicz, J. (eds) Applied Non-Linear Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-319-08266-0_13

Download citation

Publish with us

Policies and ethics