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Abstract. A considerable amount of research has been undertaken in
the field of intrusion detection in wireless sensor networks. Researchers
proposed a number of relevant mechanisms, and it is not an easy task
to select the right ones for a given application scenario. Even when a
network operator knows what mechanism to use, it remains an open
issue how to configure this particular mechanism in such a way that it is
efficient for the particular needs. We propose a framework that optimizes
the configuration of an intrusion detection system in terms of detection
accuracy and memory usage. There is a variety of scenarios, and a single
set of configuration values is not optimal for all of them. Therefore, we
believe, such a framework is of a great value for a network operator who
needs to optimize an intrusion detection system for his particular needs,
e.g., attacker model, environment, node parameters.
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1 Introduction

Awireless sensor network (WSN) consists of sensor nodes – small devices equipped
with sensors, microcontroller, wireless transceiver and battery. Each node moni-
tors a physical phenomenon and sends the measurements to a base station. Since a
node communication range is limited to tens of meters and it is not always feasible
for the node to directly communicate with the base station, data are usually sent
hop-by-hop from one node to another until they reach the base station. WSNs can
support various applications for ecology andwildlife monitoring,military, building
and industrial automation, energy management, agriculture, etc.

Sensor nodes are constrained in processing power, memory and mainly in
energy. A MICAz sensor node is a typical sensor node. It is equipped with
the 8 MHz Atmel Atmega128L microcontroller, 512 KB flash memory, 802.15.4
compliant Texas Instruments CC2420 transceiver and two AA batteries. The
transceiver consumes 18.8 mA (with 3.3 V power supply) in the receiving mode
[1], which is the most energy consuming mode. If we use two NiZn AA batteries
with a nominal voltage of 1.65 V and a capacity of 1800 mAh, the estimated
lifetime of a constantly receiving node is approximately 96 hours, i.e., 4 days.
However, in general for WSNs one expects a functional network for the duration
of time that ranges from several days to several years.
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In this paper, we propose a framework that semi-automatically optimizes the
configuration of an intrusion detection system (IDS) in terms of detection ac-
curacy and memory usage for any given scenario, e.g., a network topology, the
network stack of benign sensor nodes, and anticipated attacks. We do not aim
to propose particular novel techniques for intrusion detection (as such) in sensor
networks and our ultimate long-term aim is to provide a framework that does
not depend on a particular attacker model (or a group of models). We focus
on intrusion detection since it is an essential mechanism to protect a network
against internal attacks that are relatively easy and not expensive to mount in
WSNs. In comparison to conventional wired and wireless networks, an attacker
can often easily access the deployment area of a WSN, capture some nodes, and
launch a wide range of attacks (for the list of possible attacks, see [18]).

The paper roadmap is as follows. The conceptual architecture of our frame-
work is described in Section 2. Section 3 contains high-level technical details of
our proof-of-concept implementation. In Section 4, we describe our test case.
We tested the framework using a static topology in three different scenarios –
these scenarios were selected to illustrate the framework merits, Section 5 de-
scribes these scenarios and test results. We compare our approach to related
work in Section 6. Finally, Section 7 concludes the paper and presents plans for
our future work. Particular details of evolutionary algorithms that we used for
optimization are then provided in our technical report [7].

2 Conceptual Architecture of the Framework

In this section, we present the conceptual architecture of our framework that
semi-automatically optimizes the configuration of an IDS for a given application
scenario. The framework includes an optimization engine and a general-purpose
network simulator (see Figure 1). The whole process consists of five main steps.
In the first step, a network operator defines a fitness function for the evaluation of
an IDS configuration. We define a reasonable fitness function in Subsection 3.3.
It integrates evaluation metrics from [2] such as true positives, true negatives and
memory usage. In the second step, the network operator configures the network
simulator in such way that it simulates a scenario in which an IDS should be
deployed. This step is described in Subsection 2.1 in more detail. The remaining
three steps are completely automatic. The third and fourth steps take place in an
iterative manner. The optimization engine provides a candidate configuration of
an IDS to the simulator. The simulator evaluates it according to predefined met-
rics, e.g., detection accuracy, memory usage, and returns information required to
compute the fitness function back to the optimization engine. Based on the eval-
uation, the optimization engine changes the values of parameters and repeats the
procedure until a predefined condition holds, e.g., parameters become optimal
for a given scenario, or the maximum number of iterations is exceeded. Finally,
in the fifth step, the optimization engine outputs the best found (hopefully, the
optimal) IDS configuration.
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Fig. 1. Conceptual architecture. The arrows depict input (output) to (from) the com-
ponents of our framework.

2.1 Simulator Configuration

The network operator provides a complete network model, which among oth-
ers, includes a network topology, models of benign and malicious nodes, wireless
channel and energy consumption models (see Figure 1).

Network Topology: The simulator provides a possibility to set a topology
manually or to generate it automatically. In case the network operator knows
the precise topology of the network, he can use the first option, and optimize the
IDS for this particular topology. In case the topology is not known in advance, the
network operator can use the second option, generate several random topologies,
and optimize the IDS for all of them simultaneously. For more details, see the
discussion on robustness of a found solution in Subsection 2.2.

Benign Sensor Node: Models of the node hardware and software should be
provided, i.e., radio, IDS, medium access control (MAC) layer, network layer,
and application layer models. There could be several types of a benign node
in the network (e.g., a cluster head, a base station, a general-purpose sensor
node), and they might have a different network stack. The network operator
composes a benign node model from the available protocols (distributed within
the simulator, or implemented by a third party). If the required protocol at a
certain network layer is not available, the network operator should implement
it. Further, the network operator configures the parameters of the models.

Malicious Sensor Node: Similarly, models of the node hardware and software
should be provided. There could be several types of a malicious node in the net-
work (e.g., internal/external [18], passive/active [21]). Usually, it is known to a
network operator where the network will be deployed, and what the purpose of
the network is. Based on this information, the network operator can estimate
the risks of different attacks (e.g., selective forwarding, jamming, hello flood),
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and include into a simulation only those that pose a serious threat. The network
operator composes a malicious node model from the modified models available
within the distribution of the simulator, or implements them by himself. For
example, to implement a selective forwarder, it might be enough to modify the
network layer of a benign node to drop a certain percentage of incoming packets.

Wireless Channel: The simulator can provide more than one model for radio
propagation, and a network operator can choose the one that is more suitable
for the environment where a network will be deployed.

Energy Consumption: The simulator can provide more than one energy
consumption model.

2.2 Discussion

In this subsection, we discuss several issues related to the framework design
choices and framework usage.

Simulator Versus Testbed: We decided to use a simulator since a testbed
is slow for comparison of considered alternative configurations, labour-intensive
and it does not produce comparable results due to the uncontrollable factors
(e.g., wireless channel effects). Candidate configurations should be tested under
the same network conditions, otherwise they cannot be compared. In a testbed,
we are not able to reproduce the same environment each time a candidate config-
uration is tested because of the wireless channel effects. The simulator provides
us with such a possibility. The usage of a simulator, however, does not mean
that different wireless channel effects (similar to those in a real network) cannot
be modelled in the simulator (see wireless channel models in [9]).

Simulator Calibration: In order to get realistic results, the operator needs to
calibrate an energy consumption model and a wireless channel model in accor-
dance to the environment where a network will be deployed (we calibrated the
wireless channel for two specific environments in [4]). Their calibration can be
done manually or automatically by the integration of a simulator and a testbed
[5]. The calibration should take place before the optimization. The carefully
calibrated wireless channel model (energy consumption model) can statistically
reflect the wireless channel behaviour (energy consumption) in a real network.

Solution Robustness: A wireless environment is dynamic. It can change in an
unexpected way which may result into conditions that were not observed during
the calibration. The framework, however, should cope with that, i.e., a found
solution should keep working (preferably decreasing its effectiveness only grad-
ually) even if some network characteristics change in the network. In order to
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achieve this, a candidate solution should be evaluated on networks with different
topologies and a wireless channel model should be calibrated for different envi-
ronments (e.g., network congestion, network maximum throughput). Moreover,
the network operator can calibrate a wireless channel model for some pessimistic
scenario (even though it has not been observed yet in a given environment). For
example, he can deliberately increase the noise level in the noise model, increase
the path loss or variation in the log-normal shadowing model. For more infor-
mation on the log-normal shadowing model, see [9]. The evaluations obtained
from different networks can be combined into a single evaluation score.

Framework Generality: The framework is generic, and it could be used to
optimize different types of an IDS (misuse-based or anomaly-based, centralized
or distributed). Further, we list several examples.

In [15], the authors proposed a scheme that activates IDS agents preloaded
in sensor nodes with a certain probability. Our framework can be used to find
an optimal value of the probability for a given application scenario, i.e., to solve
the trade-off between the number of packets (links) left unmonitored (influences
a detection accuracy) and the number of IDS agents being activated (influences
energy consumption).

In [17], the authors proposed a distributed IDS that involves a set of rules
to detect different types of an attack. Our framework can be used to automat-
ically select the appropriate rules and optimize (among others) their detection
thresholds.

In [16], the authors proposed an IDS to detect packet reception rate and
receive power anomalies. The authors demonstrated that there is a trade-off
between detection probability, detection delays and false positives for their tech-
nique. Our framework can help a network operator to find the optimal values of
the IDS parameters for his/her application scenario.

3 Implementation of the Framework

Relevant high-level implementation details are provided in this section.

3.1 Optimization Engine

There are two classes of optimization algorithms – exact and approximate (heuris-
tic) algorithms. Since the evaluation of candidate solutions cannot be done ana-
lytically in our case, the exact algorithms can hardly be applied. The heuristics
are divided into population-based and single-solution based algorithms. We use
a population-based algorithm because in comparison to a single-solution based
algorithm it provides us with the ability to evaluate multiple candidate solutions
in parallel and hence to speed up the convergence of an optimization.
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There is a variety of population-based algorithms, e.g., evolutionary algo-
rithms (EAs), particle swarm optimization, immune networks. We use EAs as
we already have successfully applied these algorithms for the automatic
generation of secrecy amplification protocols in WSNs [3].

EAs work with a population of candidate solutions (individuals in terms of
EAs) and evaluate them using a fitness function. EAs generate new candidate
solutions applying genetic operators of crossover and mutation to the solutions
in the population. In each generation, EAs update the population with new
candidate solutions. The process repeats until an optimal solution is found or
the maximum number of iterations is exceeded. For more information on EAs,
see [8].

The optimization engine is based on Evolving Objects [10], an advanced
component-based framework with a high number of already implemented opti-
mization algorithms. For the purpose of this work, we used a basic evolutionary
algorithm eoEasyEA that is highly configurable and suits our needs. We reused
existing operators for selection, replacement, termination and statistics collec-
tion, and implemented only problem specific parts of initialization, mutation,
crossover, and evaluation. More details on the settings of EAs can be found in
our technical report [7].

3.2 Network Simulator

We use the MiXiM network simulator [11], which is based on the OMNeT++
simulation framework [12]. MiXiM has a modular architecture with a high num-
ber of already implemented models for a WSN simulation. It inherits many
advanced features from OMNeT++ and thus is very adaptable and configurable.
The whole simulation is configured via a dedicated OMNeT++ configuration file.
A candidate solution (an individual) is represented as a list of configuration val-
ues stored in a separate configuration file. Before the evaluation (simulation)
starts, the file is included in the main configuration file.

The choice of a general-purpose WSN simulator allowed us to move one step
forward towards more realistic simulations, since MiXiM provides more accurate
simulation models, e.g., for wireless channel, radio, and MAC layers, in compar-
ison to a very fast purpose-built simulator we used in our previous work [3].
However, the accuracy comes at the price of speed. We simulated a network
operating for one hour, and it took about 5 minutes to simulate such network
on a single CPU core. In order to get a solution in acceptable time, we decided
to utilize distributed computing.

We chose the BOINC distributed computing platform [13] for our experiments.
In cooperation with the Institute of Computer Science at Masaryk University, we
attached about 200 CPU cores from the campus to our BOINC infrastructure
and used them when they were idle. Other 700 cores were available from the
National Grid Infrastructure project MetaCentrum.
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3.3 Configuration Evaluation

A candidate configuration of an IDS is evaluated based on its accuracy and
memory usage. In this paper, two terms IDS and monitoring node are used
interchangeably.

Notation 1. The set A = {a1, ..., anm} is a set of malicious nodes in a network.

Notation 2. The set C = {c1, ..., cnb
} is a set of all benign nodes in a network.

Notation 3. The function x : N → N takes a sensor node index as an argument,
and returns a number of the neighbours that consider this node benign.

Notation 4. The function y : N → N takes a sensor node index as an argument,
and returns a number of the neighbours that consider this node malicious.

Notation 5. The function n : N → N takes a sensor node index as an argument,
and returns a number of the neighbours of this node.

Notation 6. The function m : N → N takes a sensor node index as an ar-
gument, and returns the amount of memory (in bytes) used by an IDS on this
node.

Accuracy: We measured accuracy based on the number of true positives and
true negatives:

– A true positive occurs when a monitoring node c ∈ C correctly considers its
neighbour a ∈ A malicious.

– A true negative occurs when a monitoring node ci ∈ C correctly considers
its neighbour cj ∈ C (i �= j) benign.

A node k ∈ C ∪ A considers the node l ∈ C ∪ A as a neighbour if it received
at least one packet from l during the simulation. We assume that sensor nodes
are distributed in such a way, that every node in the network has at least one
neighbour.

For a benign node ci, we calculated the percentage of the neighbours that
considered the node benign. Further, we found the average of such values over
all benign nodes in the network and denoted the result as tn. Similarly, for a
malicious node ai, we calculated the percentage of the neighbours that consid-
ered the node malicious. Further, we found the average of such values over all
malicious nodes in the network and denoted the result as tp.

The accuracy function is the weighted mean of tn and tp:

w1∗tn+w2∗tp
(w1+w2)

, where tn = 1
|C| ∗

∑
ci∈C

x(ci)
n(ci)

, tp = 1
|A| ∗

∑
ai∈A

y(ai)
n(ai)

.

We assume that |C| > 0 and |A| > 0.
The function values range from 0 to 1. If every malicious node in the network

is detected by all of its neighbours, and every benign node in the network is not
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considered malicious by any of its neighbours, the accuracy function is equal
to 1, i.e., the maximum possible value. On the other hand, if none of malicious
nodes is detected by at least one of its neighbours, and every benign node is
considered malicious by all of its neighbours, the accuracy function is equal to
0, i.e., the minimum possible value.

The proposed function does not take the distribution of x(ci)
n(ci)

and y(bi)
n(bi)

into

account. In certain cases, e.g., when a base station uses a majority voting scheme
to make a final decision whether a node is benign or not, it might be preferable

to have more values of x(ci)
n(ci)

and y(bi)
n(bi)

that are slightly above 0.5 instead of a

few values that are extremely high.

Memory Usage: The effectiveness of memory usage by the IDS on a node
ci ∈ C was evaluated using the formula: 1

1+m(ci)
.

If the IDS is switched off at the node ci, then m(ci) = 0 and 1
1+m(ci)

= 1.

Furthermore, if m(ci) increases, then the effectiveness of memory usage decreases
towards zero.

Further, we calculated the average value of 1
1+m(ci)

over all benign nodes in

the network. More formally, it can be written as: 1
|C| ∗

∑
ci∈C

1
1+m(ci)

. We assume

that |C| > 0.
The designed function provides values that are not correlated to accuracy

values. In certain cases, however, it might be useful to take into account that
even a small amount of memory is a waste if the accuracy of an IDS is low. Yet
a higher amount of used memory can be justified if the IDS is highly accurate.

Fitness Function: For the purpose of this work, we added both accuracy and
memory usage metrics together, making the accuracy metric to contribute more
to the value of the sum than the memory metric by introducing weights. The
weight was set to 1 for the accuracy metric, and it was set to 0.1 for the memory
usage metric. The weight for the memory usage should be carefully selected – if
it is too high (i.e., it is more important to save memory than to detect attacks),
the optimal solution is to switch all IDSs off, or set a maximum number of mon-
itored nodes and buffer size to zero. We set w1 = w2 = 1 in the accuracy metric.
The resulting fitness function is:

1
2|C| ∗

∑
ci∈C

x(ci)
n(ci)

+ 1
2|A| ∗

∑
ai∈A

y(ai)
n(ai)

+ 0.1 1
|C| ∗

∑
ci∈C

1
1+m(ci)

.

4 Our Test Case

In this section, we describe the scenario for which we would like to test the
framework on. The framework is used to find optimal parameters of an IDS
(we implemented it in the MiXiM simulator for purposes of our previous work [6])
for a given scenario. A network operator (a person who uses our framework)
knows behavior of benign nodes and assumes behavior of malicious nodes.
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If another than assumed type of an attack appears in the deployed network,
the parameters found by the framework might not be optimal for such network.

4.1 Topology

Wegenerated a topology of 250 static sensor nodes uniformly randomly distributed
over an 200m× 200m area.A single base station is placed in the center of the area.
The topology together with a routing tree is depicted in
Figure 2. There are 246 benign sensor nodes (white) including the base station,
and 5 malicious nodes (black filled). According to [14], the terrestrial WSNs typ-
ically consist of hundreds to thousands of inexpensive sensor nodes. However, the
purchase of a large network is not always feasible due to the current price of sensor
nodes. AMICAz sensor node costs aboute80. Therefore, we believe that medium-
sized networks that consist of hundreds of nodes are more reasonable to consider.

In order to make the analysis of results (w.r.t. their optimality) from the
framework simpler and more intuitive, we focus on static sensor nodes. However,
more dynamic network scenarios can be modeled as well. MiXiM provides a
variety of node mobility models [11].

(a) 1st placement of mal. nodes. (b) 2nd placement of mal. nodes.

Fig. 2. Topology, routing tree, and placement of malicious nodes

4.2 Benign Node

We assume a benign node uses a network stack that consists of application,
routing protocol, MAC protocol, and intrusion detection system.

Application Layer: We consider a standard application for a WSN, where
every node sends one packet to a base station every 30 seconds. The application
runs for one hour. In order to avoid collisions (due to node synchronization), the
whole time-frame is divided into intervals of length 30 seconds. For every interval
i, a node generates a random number r (0 ≤ r ≤ 30) and starts transmitting at
i+ r. The size of a packet is 152 B.



352 A. Stetsko et al.

Network Layer: We assume that the network layer uses static routing. The
routing tree was generated as follows. A base station broadcasts a packet con-
taining its identification together with the value h set to 0. A node waits until it
receives a packet from a neighbour that is the closest one (has the highest signal
strength). Then the node sets the neighbour as its parent, increases value h by
1 and broadcasts the value together with its identification. Value h represents
number of hops to the base station.

Medium Access Layer: We use CSMA-CA at this layer.

Physical Layer: We use a model for CC2420 radio that is commonly used in
sensor nodes, e.g., TELOSB, MICAz sensor nodes.

Intrusion detection system: We use a simple IDS that we implemented in
the MiXiM simulator for the purpose of our previous work [6]. The IDS uses a
detection rule (more specifically, a retransmission rule) from [17]. It is not the
goal of this paper to propose a complex IDS, but rather to test the framework
as such. In the conventional networks, one can use a commercial IDS, to run
the framework on, and compare the IDS before and after the optimization to
see the improvement. For WSNs, however, to our best knowledge, there are no
commercial IDSs available.

An IDS is running on a sensor node and it continuously analyzes sent and
overheard packets. The IDS does not include responsive and collaborative com-
ponents (see [20] for the conceptual architecture of an IDS in WSNs). Therefore,
the IDS does not generate any additional traffic.

A monitoring node overhears to some extent both incoming and outgoing
packets of a close enough monitored neighbour. An IDS stores a table, where
each row corresponds to a certain monitored node. The table contains the number
of packets received (PR) and forwarded (PF) by a monitored node. The number
of rows is limited to a number of monitored nodes.

The detection exploits the fact that a monitoring node overhears (to some
extent) both incoming and outgoing packets of a close enough monitored neigh-
bour. If the IDS on a node ci ∈ C overhears a packet P sent to a node bj ∈ C∪A,
bj is close enough and bj should forward the packet (e.g., bj is not a base sta-
tion), then the IDS stores P in the buffer and increments the PR counter of
the monitored node bj. The number of packets is limited by a buffer size. If a
new packet arrives but the buffer is full, the oldest packet is removed from the
buffer. When the IDS overhears the packet P being forwarded by the node bj , it
removes P from the buffer (if it is still there) and increments the PF counter of
the node bj . Since both the table and the buffer are limited, the IDS monitors
only the closest nodes and the newest packets.

The detection is done at the end of the simulation based on the collected
statistics. The node ci considers the node bj as a selective forwarder if the drop-
ping ratio of bj, i.e., ratio of a number of packets dropped to a number of packets
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received, is higher than a predefined detection threshold. If the node ci overheard
less than the predefined number of packets received by bj as overheard by ci, ci
does not consider bj malicious as the number of overheard packets is small and
there is a high level of uncertainty. We cannot influence the number of overheard
packet, but we can change our decision making process based on this value and
potentially decrease a number of false positives.

The IDS running on a node ci consumes m(ci) = p1 ∗ 8+p2 ∗ 16 B of memory.
Each record in the table occupies 8 B (4 B for node ID, 2 B for PR, 2 B for PF ),
and there are p1 such records. Each record in the buffer occupies 16 B (4 B for
MAC source ID, 4 B for MAC destination ID, 4 B for MAC intermediate node
ID, and 4 B for packet counter), and there are p2 such records.

We would like to optimize the following four parameters: p1 (number of nodes
to be monitored), p2 (a number of packets stored in a buffer), p3 (number of
packets received) and p4 (detection threshold). The value of p1 ranges from 0 to
54 (the maximum number of neighbours in our simulation scenario), p2 – from
0 to 100, p3 – from 0 to 2000, and p4 from 0 to 100.

4.3 Malicious Node

Currently, for our proof-of-concept implementation of the framework, we assume
a single type of malicious node – a selective forwarder, i.e., a node that drops a
certain percentage of received packets. We assume the model is the same as the
model of a benign node, except for the network layer that is modified to drop
a certain percentage of received packets (in our case 50%), and an IDS that is
omitted.

5 Testing Results

We tested our prototype on three optimization scenarios, each with the different
size of the search space. Their description together with the obtained results are
presented in the following subsections. The settings of EAs for each optimiza-
tion scenario are described in the corresponding subsections of our technical
report [7]. For the evaluation of a candidate configuration, we used the fitness
function defined in Subsection 3.3. Time needed to complete the optimization is
indicated in terms of a number of EA generations and evaluations.

5.1 Optimization Scenario No. 1

In this scenario, we assume that every benign node in the network runs an
IDS, and the IDS is configured in the same way for these nodes. The goal is
to optimize the configuration (p1, p2, p3 and p4), common for all sensor nodes,
using our framework.

We performed both an exhaustive search and an EA-based search, and com-
pared the results. In order to make the exhaustive search timely acceptable, we
fixed p2 = 100 and p3 = 0. The reduced search space contained 5555 possible
configurations (see the description of an IDS in Subsection 4.2).
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Exhaustive Search: Fitness values for each possible combination of p1 and
p4 are depicted in Figure 3. The maximum fitness value (0.8249276442) was
achieved for the configuration with p1 = 27 and p4 = 0.45. The threshold is
below 0.5 (the dropping rate of a malicious node, see Subsection 4.3), because a
monitoring node cannot reliably overhear all packets sent to a malicious node,
and hence the dropping rate of the malicious node as observed by the monitoring
node may be lower than 0.5.

(a) View from the side. (b) View from the top.

Fig. 3. Fitness values for all possible combinations of p1 and p4

Evolutionary Algorithm: We ran the optimization process 30 times. The EA
was able to find the best configuration (found by the exhaustive search) using
19 generations on average. The standard deviation was 9.64. On average, the
EA required 144.87 evaluations. The standard deviation was 67.37. In the worst
case, the EA required 271 evaluations, while the exhaustive search required 5400
evaluations.

5.2 Optimization Scenario No. 2

In this scenario, we assume that only a subset of benign nodes runs IDSs, which
are configured in the same way on all selected nodes. As opposed to the node
(IDS) placement problem, the framework should find the optimal placement as
well as the optimal configuration of the IDSs.

There are 250 parameters to optimize: p1, p2, p3, p4, and 246 Boolean pa-
rameters, each indicating whether the IDS should be enabled or disabled on a
given node. We fixed two parameters (p2 = 100 and p3 = 0). The search space
contained 55 ∗ 101 ∗ 2246 possible configurations.

We ran the optimization process on two networks with the same topology but
with the different placement of malicious nodes (see Figure 4(a) and Figure 4(b)).
The malicious nodes are depicted with black filling. We repeated the optimization
process 30 times for both placements of malicious nodes.

First Placement of Malicious Nodes: The best configuration found by the
EA had the fitness value equal to 0.8940953359, p1 = 27, and p4 = 0.45 (the
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same values were found for the first optimization scenario). The switched on/off
IDSs are depicted in Figure 4(a). Nodes that ran an IDS are depicted with grey
filling. The configuration generated 1723 false positives and 33 false negatives,
i.e., 7.03 false positives per benign node, and 6.6 false negatives per malicious
node. The configuration was found using 581.77 generations on average. The
standard deviation was 88.59. On average, the EA required 10600.17 evaluations.
The standard deviation was 1603.29. In the worst case, the EA required 13349
evaluations.

Although we did not perform an exhaustive search, we believe that the found
configuration was optimal. The intuition behind this is as follows. If an IDS
running on a node ci ∈ C detects a malicious neighbour aj ∈ A, then switching
it off reduces a number of false positives, increases memory usage effectiveness,
but causes a false negative. As we discovered, it is natural for the EA to switch
such an IDS on since the benefit (according to the designed evaluation function,
see Subsection 3.3) is higher than from switching the IDS off. We verified (by
setting p4 = 0 and p1 = 54) that the EA achieved the minimum possible number
of false negatives, and the minimum number of false positives for the given
number of false negatives.

(a) 1st placement of mal. nodes. (b) 2nd placement of mal. nodes.

Fig. 4. The best found placements of IDSs in the network

Second Placement of Malicious Nodes: The best configuration found by
the EA had the fitness value equal to 0.8780288967, p1 = 24, and p4 = 0.5. The
switched on/off IDSs are depicted in Figure 4(b). The configuration generated
1173 false positives and 42 false negatives. We believe that the found configura-
tion was optimal. The intuition behind this is the same as for the first placement
of malicious nodes. We verified (by setting p4 = 0 and p1 = 54) that the achieved
number of false negatives was the lowest possible, and the achieved number of
false positives was the lowest possible for the given number of false negatives.

The best configuration was found by 14 optimization runs. The average num-
ber of generations was 499.57. The standard deviation was 82.185. On average,
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the EA required 9096.1 evaluations. The standard deviation was 1501.5. Other
8 runs ended up with the configuration where the fitness value was equal to
0.8764108606. The rest of the runs found configurations with fitness values equal
to or higher than 0.8656972029.

When comparing the best configurations found for both placements, an av-
erage number of false events per node (an average number of false positives per
node added together with an average number of false negatives per node) was
higher for the first placement (13.6 versus 13.17), but the fitness value was higher
for the second one (0.8940953359 versus 0.8780288967). That might be caused by
the fact that nodes falsely accused or falsely not detected in the first placement
had a higher number of neighbours, which is also reflected in the selected value
of p1 (27 versus 24).

5.3 Optimization Scenario No. 3

In this scenario, we again assume that only a subset of benign nodes runs IDSs.
In comparison to the previous optimization scenario, here each IDS may be con-
figured in a different way. As opposed to the node (IDS) placement problem, the
framework should find the optimal placement as well as the optimal configuration
of each IDS.

The search space contained (55 ∗ 101 ∗ 2001 ∗ 101 ∗ 2)246 configurations. The
IDS implemented in our test case did not influence the network traffic, and
hence did not influence other IDSs. Therefore, configurations of any two IDSs
were independent of each other. We launched 246 independent optimizations and
significantly reduced the search space, i.e., to 246 ∗ (55 ∗ 101 ∗ 2001 ∗ 101 ∗ 2)
possible configurations.

We did two experiments. In the first experiment, we launched a single opti-
mization that searched for the best configuration for all sensor nodes together.
In the second experiment, we launched 246 independent optimizations, each
searching for the best configuration for a particular sensor node only.

First Experiment: We started with a randomly generated initial population.
The evolution began to improve the configuration, but the speed of convergence
was too slow. Therefore, we decided to start the optimization process again,
using the population of the best configurations from the second optimization
scenario (see Subsection 5.2). This optimization was gradually improving the
configuration and reached the fitness value of 0.955133 after 136′765 evaluations
in the 21′439th generation. The evolution was stopped when no improvement
was found during next 500 generations.

Second Experiment: All 246 optimizations started with the initial population
that contained the best configurations for the second optimization scenario. By
combining optimized parameters from these optimizations, a configuration that
reached the fitness value of 0.9604364302 was found. When compared to the
second optimization scenario, this approach was able to significantly improve
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the resulting IDS configuration by tweaking the parameters independently for
each node. A configuration found in each independent optimization required
422.63 generations on average. The standard deviation was 63.84. On average,
the EA required 2811.68 evaluations to find a configuration in each independent
optimization. The standard deviation was 427.05. In the worst case, the EA
required 5365 evaluations.

We ran another experiment to verify whether the configuration found by the
EA was optimal. The experiment was based on the intuition we mentioned in
Subsection 5.2. For an IDS, we fixed the parameters in such a way that it could
detect as many malicious nodes as possible (p1 = 54, p2 = 100, p3 = 0, p4 = 0).
Further, we found the minimum value of p1 such that all malicious nodes can
still be detected by the IDS. The same procedure was repeated for other three
parameters. We confirmed that p1, p2 and the placement of IDSs were optimal.
However, p3 and p4, as we discovered, could be further improved.

6 Related Work

The placement of nodes (IDSs) can be considered as a subproblem of a more
general node (IDS) configuration problem where one of the node (IDS) config-
uration parameters may indicate where the node is placed (whether an IDS is
enabled/disabled at this node).

The placement problem received high attention from research community. For
example, [22,23,24] proposed techniques for IDS placement problem in WSNs.
[19] surveyed 46 techniques that help to find optimal node placement in WSNs.
In contrast, our framework is more generic and additionally provides a possibility
to find optimal configuration of IDS parameters (e.g., detection threshold, buffer
size). For more information, see Sections 4 and 5. To the best of our knowledge,
we are the first optimizing IDS parameters in WSNs.

[22] proposed an algorithm finding a minimum number of activated IDSs such
that every packet forwarded from a source towards the base station was analyzed
at least once on its path. In comparison to our work, the authors did not consider
IDS configuration. Furthermore, the algorithm considers only packets forwarded
by the monitoring nodes and not packets overheard in a promiscuous mode.

[26] aimed at multi-objective optimization using an EA for deployment of a
homogeneous WSN with the coverage and lifetime of the network as objectives.
[25] presented a methodology of multi-objective optimization for self-organizing
WSNs using an EA. Their fitness function took application-specific, connectivity
and energy-related metrics into account. The goal was to find out optimized
operation mode for each node in the network. The authors did not consider any
IDS. Furthermore, they did not consider node parametrization.

Methodology how a multi-objective evolutionary algorithm for design-space
exploration could be configured was presented in [27]. Lifetime, latency and
reliability are used as three QoS (Quality of Service) metrics with several trade-
offs. In our work, we used a different set of metrics. The authors used multi-
objective optimization.
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[28,29,30] used EAs for several optimization issues in WSNs.
[30] incorporated local monitoring nodes (LMNs) into the WSN. These nodes

observe suspicious behavior and monitor data message patterns, message colli-
sions, route traffic activity trends and sensor positioning in their neighbourhood.
The fitness function measures optimality of the LMN positioning and accurate
identification of malicious nodes. The authors do not consider optimization of
IDSs parameters in this work.

More detailed treatment of related work is provided in our tech. report [7].

7 Conclusion and Future Work

To our best knowledge, there is no work that focuses on (semi) automatic and
systematic configuration of intrusion detection systems for wireless sensor net-
works, which we believe is an important area to explore.

In this work, we describe procedures to optimize the configuration of an intru-
sion detection system for a given application of a wireless sensor network. Also,
we discusses how solution robustness and solution realism can be achieved.

We presented a prototype of our framework that optimizes the configura-
tion of an intrusion detection system in wireless sensor networks. The design
and implementation of the framework leveraged our previous results in the field
of simulators (particularly realism of simulators for wireless sensor networks),
optimization and evaluation metrics.

We tested our framework on three carefully selected scenarios with a different
size of their search space. Our results demonstrated that evolutionary algorithms
can be potentially used to search for a solution of the given problem more effec-
tively. However, this conclusion is not valid in general (since the hypothesis was
tested only on three selected scenarios). More general conclusion can be made
if the community use evolutionary algorithms on a bigger set of different sce-
narios (different application, routing, medium access control and physical layer,
different topologies, different attacker models).

Our framework can find reasonable (if not optimal) configuration of an intru-
sion detection system for a given (arbitrary but specified in advance) scenario.
Values found by our framework may not be reasonable if these values are used in
a different scenario, i.e., intrusion detection system, topology, attacker behavior.

The obtained results, we believe, are more than promising. Hence, we plan
to use our framework to optimize different techniques for detection of different
attackers. Also, we plan to use our framework to optimize an intrusion detec-
tion system for our laboratory testbed, configure the intrusion detection system
according to the output provided by the framework, deploy it, and analyze the
results collected from the testbed.

The future version of our framework will also use multi-objective evolutionary
algorithms.

While we focused on the optimization of an intrusion detection system (other
layers were fixed), we believe that such a framework can be easily extended to
optimize the whole network stack. This can be explored in the future.
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