Skip to main content

From Inverse Kinematics to Optimal Control

  • Chapter
  • First Online:
Advances in Robot Kinematics

Abstract

Numerical optimal control (the approximation of an optimal trajectory using numerical iterative algorithms) is a promising approach to compute the control of complex dynamical systems whose instantaneous linearization is not meaningful. Aside from the problems of computation cost, these methods raise several conceptual problems, like stability, robustness, or simply understanding of the nature of the obtained solution. In this chapter, we propose a rewriting of the Differential Dynamic Programing solver. Our variant is more efficient and numerically more interesting. Furthermore, it draws some interesting comparisons with the classical inverse formulation: in particular, we show that inverse kinematics can be seen as singular case of it, when the preview horizon collapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The problem we name inverse geometry is sometimes referred as inverse kinematics, the second being referred as differential (or closed-loop) inverse kinematics. We use ‘geometry’ when only static postures are implied and keep the word ‘kinematics’ when a motion is explicitly implied.

References

  1. Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes. Springer, Lecture Notes in Control and Information Sciences (2006)

    MATH  Google Scholar 

  2. Biegler, L.: Nonlinear programming: concepts, algorithms, and applications to chemical processes. SIAM, Philadelphia (2010)

    Google Scholar 

  3. Das, H., Slotine, J.J., Sheridan, T.: Inverse kinematic algorithms for redundant systems. In: IEEE International Conference on Robotics and Automation (ICRA’88), pp. 43–48. Philadelphia (1988)

    Google Scholar 

  4. Deo, A., Walker, I.: Robot subtask performance with singularity robustness using optimal damped least squares. In: IEEE ICRA, pp. 434–441. Nice (1992)

    Google Scholar 

  5. Escande, A., Mansard, N., Wieber, P.B.: Hierarchical quadratic programming. Int. J. Robot. Res. (2012) (in press)

    Google Scholar 

  6. Goldfarb, D.: A family of variable-metric methods derived by variational means. Mathematics of computation 24(109), 23–26 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)

    Google Scholar 

  8. Jacobson, D.H., Mayne, D.Q.: Differential Dynamic Programming. Elsevier, Amsterdam (1970)

    Google Scholar 

  9. Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. Int. J. Robot. Res. 3(1), 43–53 (1987)

    Google Scholar 

  10. Leineweber, D.B., Schäfer, A., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced sqp strategy for large-scale dynamic process optimization: part II: software aspects and applications. Comput. Chem. Eng. 27(2), 167–174 (2003)

    Article  Google Scholar 

  11. McCarthy, J.: Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)

    Google Scholar 

  12. Mombaur, K.: Using optimization to create self-stable human-like running. Robotica 27(03), 321 (2008). doi:10.1017/S0263574708004724

  13. Mordatch, I., Todorov, E., Popović, Z.: Discovery of complex behaviors through contact-invariant optimization. In: ACM SIGGRAPH’12. Los Angeles (2012)

    Google Scholar 

  14. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  15. Pantoja, D.O.: Differential dynamic programming and newton’s method. Int. J. Control 47(5), 1539–1553 (1988). doi:10.1080/00207178808906114. http://www.tandfonline.com/doi/abs/10.1080/00207178808906114

  16. Schulman, J., Lee, A., Awwal, I., Bradlow, H., Abbeel, P.: Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems (2013)

    Google Scholar 

  17. Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In: IROS’12, Portugal

    Google Scholar 

  18. Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’12), pp. 4906–4913 (2012). doi:10.1109/IROS.2012.6386025

  19. Tassa, Y., Mansard, N., Todorov, E.: Control-Limited Differential Dynamic Programming (Under Review)

    Google Scholar 

  20. Todorov, E., Li, W.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proceedings of the American Control Conference (ACC’05), pp. 300–306. Portland (2005). doi:10.1109/ACC.2005.1469949

  21. Whitney, D.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man Mach. Syst. 10(2), 47–53 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perle Geoffroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geoffroy, P., Mansard, N., Raison, M., Achiche, S., Todorov, E. (2014). From Inverse Kinematics to Optimal Control. In: Lenarčič, J., Khatib, O. (eds) Advances in Robot Kinematics. Springer, Cham. https://doi.org/10.1007/978-3-319-06698-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06698-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06697-4

  • Online ISBN: 978-3-319-06698-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics