Skip to main content

Does Elevated CO2 Provide Real Benefits for N2-Fixing Leguminous Symbioses?

  • Chapter

Abstract

Feeding the growing world population will be a significant challenge for agricultural development in the twenty-first century. Simultaneously, global climate change will provide an additional challenge by significantly modifying the potential capability of the cultivated plants, particularly for those favoring symbiotic association with soil bacteria. Hence, the whole-plant nutritional metabolism is expected to reprogram basically to meet these climatic variables that collectively become a major concern for future agriculture. In the frame of the current and projected climate scenarios, this chapter attempts to address whether symbiotic legumes would benefit greatly from the current and projected higher levels of carbon dioxide (CO2) in the atmosphere—sometimes called the CO2 fertilization effect. On the basis of the results obtained by several researchers, nodulated legumes are projected to have a stronger response to elevated CO2 whose level is continuously rising. In sharp contrast, another group of researchers has questioned such beneficial responses by symbiotic legumes. Apparently, the experimental findings dealing with the effects of elevated CO2 on legume growth and function have revealed significant discrepancies and variability. In this chapter, we briefly outline the nature of global climate change in terms of rising atmospheric CO2 and then discuss the potential biotechnological targets for improving N2-fixing symbioses in a world of increasing CO2 level. Current interest in understanding legume responses to changing global climate makes this overview timely.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainsworth EA, Rogers A, Nelson R et al (2004) Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric Forest Meteorol 122:85–94

    Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising (CO2): Mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    CAS  PubMed  Google Scholar 

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154(2):526–530

    PubMed Central  CAS  PubMed  Google Scholar 

  • Almeida JPF, Hartwig UA, Frehner M et al (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297

    CAS  PubMed  Google Scholar 

  • Aranjuelo I, Irigoyen JJ, Perez P et al (2005) The use of temperature gradient tunnels for studying the combined effect of CO2, temperature and water availability in N2 fixing alfalfa plants. Ann Appl Biol 146:51–60

    Google Scholar 

  • Aranjuelo I, Irigoyen JJ, Perez P et al (2006) Response of nodulated alfalfa to water supply, temperature and elevated CO2: productivity and water relations. Environ Exp Bot 55:130–141

    Google Scholar 

  • Aranjuelo I, Irigoyen JJ, Sánchez-Díaz M et al (2008) Carbon partitioning in N2 fixing Medicago sativa plants exposed to different CO2 and temperature conditions. Funct Plant Biol 35(4):306–317

    CAS  Google Scholar 

  • Aranjuelo I, Cabrerizo PM, Arrese-Igor C et al (2013) Pea plant responsiveness under elevated [CO2] is conditioned by the N source (N2 fixation versus NO3 fertilization). Environ Exp Bot 95:34–40

    CAS  Google Scholar 

  • Aranjuelo I, Cabrerizo PM, Aparicio-Tejo PM et al (2014) Unravelling the mechanisms that improve photosynthetic performance of N2-fixing pea plants exposed to elevated [CO2]. Environ Exp Bot 99:167–174

    CAS  Google Scholar 

  • Araújo SS, Beebe S, Crespi M et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280

    Google Scholar 

  • Arrese-Igor C, Gonzalez EM, Gordon AJ et al (1999) Sucrose synthase and nodule nitrogen fixation under drought and other environmental stresses. Symbiosis 27:189–212

    CAS  Google Scholar 

  • Baslam M, Antolín MC, Gogorcena Y et al (2014) Changes in alfalfa forage quality and stem carbohydrates induced by arbuscular mycorrhizal fungi and elevated atmospheric CO2. Ann Appl Biol 164:190–199

    CAS  Google Scholar 

  • Bertrand A, Prévost D, Bigras FJ et al (2007a) Elevated atmospheric CO2 and strain of Rhizobium alter freezing tolerance and cold-induced molecular changes in alfalfa (Medicago sativa). Ann Bot 99:275–284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bertrand A, Prévost D, Bigras FJ et al (2007b) Alfalfa response to elevated atmospheric CO2 varies with the symbiotic rhizobial strain. Plant Soil 301:173–187

    CAS  Google Scholar 

  • Bertrand A, Prévost D, Juge C et al (2011) Impact of elevated CO2 on carbohydrate and ureide concentrations in soybean inoculated with different strains of Bradyrhizobium japonicum. Botany 89:481–490

    CAS  Google Scholar 

  • Cabeza RA, Lingner A, Liese R et al (2014) The activity of nodules of the supernodulating mutant Mt sunn is not limited by photosynthesis under optimal growth conditions. Int J Mol Sci 15:6031–6045

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cabrerizo PM, González EM, Aparicio-Tejo PM et al (2001) Continuous CO2 enrichment leads to increased nodule biomass, carbon availability to nodules and activity of carbon-metabolising enzymes but does not enhance specific nitrogen fixation in pea. Physiol Plant 113(1):33–40

    CAS  Google Scholar 

  • Cen YP, Layzell DB (2004) Does oxygen limit nitrogenase activity in soybean exposed to elevated CO2? Plant Cell Environ 27:1229–1238

    CAS  Google Scholar 

  • Cernusak LA, Winter K, Martínez C et al (2011) Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol 157(1):372–385

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charpentier M, Oldroyd G (2010) How close are we to nitrogen-fixing cereals? Curr Opin Plant Biol 13:556–564

    CAS  PubMed  Google Scholar 

  • Daepp M, Suter D, Almeida JPF et al (2000) Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biol 6(7):805–816

    Google Scholar 

  • Dakora FD, Drake BG (2000) Elevated CO2 stimulates associative N2 fixation in a C3 plant of the Chesapeake Bay wetland. Plant Cell Environ 23(9):943–953

    CAS  Google Scholar 

  • Deiglmayr K, Philippot L, Hartwig UA et al (2004) Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric pCO2. FEMS Microbiol Ecol 49:445–454

    CAS  PubMed  Google Scholar 

  • Ellsworth DS, Reich PB, Naumburg ES et al (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biol 10(12):2121–2138

    Google Scholar 

  • Erice G, Irigoyen JJ, Sánchez-Díaz M et al (2007a) Effect of drought, elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting. Plant Sci 172:903–912

    CAS  Google Scholar 

  • Erice G, Aranjuelo I, Irigoyen JJ et al (2007b) Effect of elevated CO2, temperature and limited water supply on antioxidant status during regrowth of nodulated alfalfa. Physiol Plant 130:33–45

    CAS  Google Scholar 

  • Erice G, Sanz-Sáez A, Aranjuelo I et al (2011) Photosynthesis, N2 fixation and taproot reserves during the cutting regrowth cycle of alfalfa under elevated CO2 and temperature. J Plant Physiol 168:2007–2014

    CAS  PubMed  Google Scholar 

  • Feng Z, Dyckmans J, Flessa H (2004) Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia. Tree Physiol 24:323–330

    CAS  PubMed  Google Scholar 

  • Fischinger SA, Drevon JJ, Claassen N et al (2006) Nitrogen from senescing lower leaves of common bean is re-translocated to nodules and might be involved in a N-feedback regulation of nitrogen fixation. J Plant Physiol 163:987–995

    CAS  PubMed  Google Scholar 

  • Fischinger SA, Schulze J (2010) The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation. J Exp Bot 61(9):2281–2291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischinger SA, Hristozkova M, Mainassara Z et al (2010) Elevated CO2 concentration around alfalfa nodules increases N2 fixation. J Exp Bot 61:121–130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fotelli MN, Tsikou D, Kolliopoulou A et al (2011) Nodulation enhances dark CO2 fixation and recycling in the model legume Lotus japonicus. J Exp Bot 62(8):2959–2971

    CAS  PubMed  Google Scholar 

  • Freeman C, Kim S-Y, Lee S-H et al (2004) Effects of elevated atmospheric CO2 concentrations on soil microorganisms. J Microbiol 42:267–277

    CAS  PubMed  Google Scholar 

  • Garg NJ (2007) Relationship between nitrogen fixation and carbon metabolism in legumes: a review. Agric Rev 28(2):127–134

    Google Scholar 

  • Goicoechea N, Baslam M, Erice G et al (2014) Increased photosynthetic acclimation in alfalfa associated with arbuscular mycorrhizal fungi (AMF) and cultivated in greenhouse under elevated CO2. J Plant Physiol 171:1774–1781

    CAS  PubMed  Google Scholar 

  • Gray SB, Strellner RS, Puthuval KK et al (2013) Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress. Funct Plant Biol 40:137–147

    Google Scholar 

  • Guo H, Sun Y, Li Y et al (2013a) Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. Global Change Biol 19:3210–3223

    Google Scholar 

  • Guo H, Sun Y, Li Y et al (2013b) Elevated CO2 modifies N acquisition of Medicago truncatula by enhancing N fixation and reducing nitrate uptake from soil. PLoS One 8:e81373

    PubMed Central  PubMed  Google Scholar 

  • Guo H, Sun Y, Li Y et al (2014) Elevated CO2 alters the feeding behaviour of the pea aphid by modifying the physical and chemical resistance of Medicago truncatula. Plant Cell Environ 37:2158–2168

    CAS  PubMed  Google Scholar 

  • Haase S, Neumann G, Kania A et al (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221

    CAS  Google Scholar 

  • Hartwig UA, Trommler J (2001) Increase in the concentrations of amino acids in the vascular tissue of white clover and white lupin after defoliation: an indication of a N feedback regulation of symbiotic N2 fixation. Agronomie 21:615–620

    Google Scholar 

  • He Z, Xiong J, Kent AD et al (2014) Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. ISME J 8(3):714–726

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511

    CAS  Google Scholar 

  • Imtiaz M, Malhotra RS, Yadav SS (2011) Genetic adjustment to changing climates: chickpea. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change, 1st edn. Blackwell/Wiley, Hoboken, NJ, pp 251–268

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, pp 1–18

    Google Scholar 

  • Irigoyen JJ, Goicoechea N, Antolín MC et al (2014) Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: an updated survey. Plant Sci 226:22–29

    CAS  PubMed  Google Scholar 

  • Johnson SN, Ryalls JMW, Karley AJ (2014) Global climate change and crop resistance to aphids: contrasting responses of lucerne genotypes to elevated atmospheric carbon dioxide. Ann Appl Biol 165:62–72

    CAS  Google Scholar 

  • Kanemoto K, Yamashita Y, Ozawa T et al (2009) Photosynthetic acclimation to elevated CO2 is dependent on N partitioning and transpiration in soybean. Plant Sci 177:398–403

    CAS  Google Scholar 

  • Kant S, Seneweera S, Rodin J et al (2012) Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies. Front Plant Sci 3:162

    Google Scholar 

  • Karunakaran R, East AK, Poole PS (2013) Malonate catabolism does not drive N2 fixation in legume nodules. Appl Environ Microbiol 79(14):4496–4498

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA et al (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    CAS  Google Scholar 

  • Krausmann F, Gingrich S, Eisenmenger N et al (2009) Growth in global materials use, GDP and population during the 20th century. Ecol Econ 68:2696–2705

    Google Scholar 

  • Ladrera R, Marino D, Larrainzar E et al (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lam SK, Chen D, Norton R et al (2012) Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: a meta-analysis. Global Change Biol 18:2853–2859

    Google Scholar 

  • Larrainzar E, Wienkoop S, Scherling C et al (2009) Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery. Mol Plant Microbe Interact 22:1565–1576

    CAS  PubMed  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ et al (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    CAS  PubMed  Google Scholar 

  • Leakey ADB, Bishop KA, Ainsworth EA (2012) A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. Curr Opin Plant Biol 15:228–236

    CAS  PubMed  Google Scholar 

  • Libault M (2014) The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration. BioMed Res Int 2014:7 p, Article ID 507946

    Google Scholar 

  • Lima JD, Sodek L (2003) N-stress alters aspartate and asparagine levels of xylem sap in soybean. Plant Sci 165:49–56

    Google Scholar 

  • Luo Y, Su B, Currie WS et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54(8):731–739

    Google Scholar 

  • Lüscher A, Hartwig UA, Suter D et al (2000) Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of plants to elevated atmospheric CO2. Global Change Biol 6(6):655–662

    Google Scholar 

  • Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49

    CAS  PubMed  Google Scholar 

  • Milchunas DG, Mosier AR, Morgan JA et al (2005) Elevated CO2 and defoliation effects on a shortgrass steppe: forage quality versus quantity for ruminants. Agr Ecosyst Environ 111:166–184

    CAS  Google Scholar 

  • Minchin FR, Witty JF (2005) Respiratory/carbon costs of symbiotic nitrogen fixation in legumes. In: Lambers H, Ribas-Carbo M (eds) Plant respiration: from cell to ecosystem. Springer, Dordrecht, The Netherlands, pp 195–205

    Google Scholar 

  • Montealegre CM, Van Kessel C, Blumenthal JM et al (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Global Change Biol 6:475–482

    Google Scholar 

  • Nasser RR, Fuller MP, Jellings AJ (2008) Effect of elevated CO2 and nitrogen levels on lentil growth and nodulation. Agron Sustain Dev 28:175–180

    CAS  Google Scholar 

  • Nasr Esfahani M, Sulieman S, Schulze J et al (2014a) Approaches for enhancement of N2 fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions. Plant Biotechnol J 12:387–397

    CAS  Google Scholar 

  • Nasr Esfahani M, Sulieman S, Schulze J et al (2014b) Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls. Plant J 79:964–980

    CAS  PubMed  Google Scholar 

  • Neo HH, Layzell DB (1997) Phloem glutamine and the regulation of O2 diffusion in legume nodules. Plant Physiol 113:259–267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nösberger J, Long SP, Norby RJ et al (2006) Managed ecosystems and CO2: case studies, processes, and perspectives. Springer, Berlin

    Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    CAS  PubMed  Google Scholar 

  • Oldroyd GED, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    CAS  PubMed  Google Scholar 

  • Parsons R, Stanforth A, Raven AJ et al (1993) Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ 16:125–136

    CAS  Google Scholar 

  • Prasad PVV, Allen LH Jr, Boote KJ (2005) Crop responses to elevated carbon dioxide and interaction with temperature: grain legumes. J Crop Improv 13:113–155

    CAS  Google Scholar 

  • Prévost D, Bertrand A, Juge C et al (2010) Elevated CO2 induces differences in nodulation of soybean depending on bradyrhizobial strain and method of inoculation. Plant Soil 331:115–127

    Google Scholar 

  • Pritchard SG (2011) Soil organisms and global climate change. Plant Pathol 60:82–99

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Google Scholar 

  • Rogers A, Gibon Y, Stitt M et al (2006) Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant Cell Environ 29:1651–1658

    CAS  PubMed  Google Scholar 

  • Rogers A, Ainsworth EA, Leakey ADB (2009) Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 151:1009–1016

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenthal DM, Ruiz-Vera UM, Siebers MH et al (2014) Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO2] and temperatures under fully open airfield conditions. Plant Sci 226:136–146

    CAS  PubMed  Google Scholar 

  • Ryalls JMW, Riegler M, Ben D et al (2013) Effects of elevated temperature and CO2 on aboveground–belowground systems: a case study with plants, their mutualistic bacteria and root/shoot herbivores. Front Plant Sci 4:445

    Google Scholar 

  • Sanz-Sáez Á, Erice G, Aranjuelo I et al (2010) Photosynthetic down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa. J Plant Physiol 167:1558–1565

    PubMed  Google Scholar 

  • Sanz-Sáez Á, Erice G, Aguirreolea J et al (2012) Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with Sinorhizobium meliloti strain. J Plant Physiol 169:782–788

    Google Scholar 

  • Sanz-Sáez Á, Erice G, Aranjuelo I et al (2013) Photosynthetic and molecular markers of CO2-mediated photosynthetic downregulation in nodulated alfalfa. J Integr Plant Biol 55:721–734

    PubMed  Google Scholar 

  • Schortemeyer M, Hartwig UA, Hendrey GR et al (1996) Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free-air carbon dioxide enrichment (FACE). Soil Biol Biochem 28:1717–1724

    CAS  Google Scholar 

  • Schramm RW (1992) Proposed role of malonate in legume nodules. Symbiosis 14:103–113

    Google Scholar 

  • Schubert S (2007) The apoplast of indeterminate legume nodules: compartment for transport of amino acids, amides and sugars? In: Sattelmacher B, Horst WJ (eds) The apoplast of higher plants: compartment of storage, transport and reactions. Springer, Dordrecht, The Netherlands, pp 445–454

    Google Scholar 

  • Schulze J, Tesfaye M, Litjens RHMG et al (2002) Malate plays a central role in plant nutrition. Plant Soil 247:133–139

    CAS  Google Scholar 

  • Schulze J (2004) How are nitrogen fixation rates regulated in legumes? J Plant Nutr Soil Sci 167:125–137

    CAS  Google Scholar 

  • Serraj R, Vadez V, Sinclair TR (2001) Feedback regulation of symbiotic N2 fixation under drought stress. Agronomie 21:621–626

    Google Scholar 

  • Serraj R (2003) Atmospheric CO2 increase benefits symbiotic N2 fixation by legumes under drought. Curr Sci 85(9):1341–1343

    Google Scholar 

  • Serraj R, Sinclair TR (2003) Evidence that carbon dioxide enrichment alleviates ureide-induced decline of nodule nitrogenase activity. Ann Bot 91:85–89

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soussana J-F, Lüscher A (2007) Temperate grasslands and global atmospheric change: a review. Grass Forage Sci 62:127–134

    CAS  Google Scholar 

  • Sugawara M, Sadowsky MJ (2013) Influence of elevated atmospheric carbon dioxide on transcriptional responses of Bradyrhizobium japonicum in the soybean rhizoplane. Microbes Environ 28(2):217–227

    PubMed Central  PubMed  Google Scholar 

  • Sulieman S, Schulze J (2010a) The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalong A17) is low compared to Medicago sativa. J Plant Physiol 167:683–692

    CAS  PubMed  Google Scholar 

  • Sulieman S, Schulze J (2010b) Phloem-derived γ-aminobutyric acid (GABA) is involved in upregulating nodule N2 fixation efficiency in the model legume Medicago truncatula. Plant Cell Environ 33:2162–2172

    CAS  PubMed  Google Scholar 

  • Sulieman S, Fischinger SA, Gresshoff PM et al (2010) Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol Plant 140:21–31

    CAS  PubMed  Google Scholar 

  • Sulieman S (2011) Does GABA increase the efficiency of symbiotic N2 fixation in legumes? Plant Signal Behav 6:32–36

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sulieman S, Tran LS (2013) Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Crit Rev Biotechnol 33:309–327

    CAS  PubMed  Google Scholar 

  • Sulieman S, Schulze J, Tran LS (2013a) Comparative analysis of the symbiotic efficiency of Medicago truncatula and Medicago sativa under phosphorus deficiency. Int J Mol Sci 14:5198–5213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sulieman S, Ha CV, Schulze J et al (2013b) Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J Exp Bot 64:2701–2712

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sulieman S, Schulze J, Tran LS (2014) N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. J Plant Physiol 171:407–410

    CAS  PubMed  Google Scholar 

  • Suter D, Frehner M, Fischer BU et al (2002) Elevated CO2 increases carbon allocation to the roots of Lolium perenne under free-air CO2 enrichment but not in a controlled environment. New Phytol 154(1):65–75

    CAS  Google Scholar 

  • Tausz M, Tausz-Posch S, Norton RM et al (2013) Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ Exp Bot 88:71–80

    CAS  Google Scholar 

  • Terpolilli JJ, Hood GA, Poole PS (2012) What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Adv Microb Physiol 60:325–389

    CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    CAS  PubMed  Google Scholar 

  • Thomas RB, Van Bloem SJ, Schlesinger WH (2006) Climate change and symbiotic nitrogen fixation in agroecosystems. In: Newton PCD, Carran A, Edwards GR, Niklaus PA (eds) Agroecosystems in a changing climate. CRC Press, Boca Raton, FL, pp 85–116

    Google Scholar 

  • Tsikou D, Stedel C, Kouri ED et al (2011) Characterization of two novel nodule-enhanced α-type carbonic anhydrases from Lotus japonicus. Biochim Biophys Acta 1814:496–504

    CAS  PubMed  Google Scholar 

  • Tu C, Booker FL, Burkey KO et al (2009) Elevated atmospheric carbon dioxide and O3 differentially alter nitrogen acquisition in peanut. Crop Sci 49:1827–1836

    CAS  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    CAS  PubMed  Google Scholar 

  • UNPD United Nations Population Division (2010) World population projections to 2150. United Nations, New York

    Google Scholar 

  • Vadez V, Sinclair TR, Serraj R (2000) Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Physiol Plant 110:215–223

    CAS  Google Scholar 

  • Vadez V, Berger JD, Warkentin T et al (2012) Adaptation of grain legumes to climate change: a review. Agron Sust Developm 32:31–44

    Google Scholar 

  • Valentine AJ, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress: from physiology to genome and beyond. Annu Plant Rev 42:207–248

    CAS  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation of exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373–392

    CAS  Google Scholar 

  • Watanabe T, Bowatte S, Newton PCD (2013) A reduced fraction of plant N derived from atmospheric N (%Ndfa) and reduced rhizobial nifH gene numbers indicate a lower capacity for nitrogen fixation in nodules of white clover exposed to long-term CO2 enrichment. Biogeosciences 10:8269–8281

    Google Scholar 

  • Weisbach C, Hartwig UA, Heim I et al (1996) Whole-nodule carbon metabolites are not involved in the regulation of the oxygen permeability and nitrogenase activity in white clover nodules. Plant Physiol 110:539–545

    PubMed Central  CAS  PubMed  Google Scholar 

  • White J, Prell J, James EK et al (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whitehead LF, Tyerman SD, Day DA (2001) Polyamines as potential regulators of nutrient exchange across the peribacteroid membrane in soybean root nodules. Aust J Plant Physiol 28:675–681

    CAS  Google Scholar 

  • Yamakawa T, Tanaka S, Ishizuka J (1997) Effect of CO2-free air treatment on nitrogen fixation of soybeans inoculated with Bradyrhizobium japonicum and Rhizobium fredii. Soil Sci Plant Nutr 43:819–826

    Google Scholar 

  • Yamakawa T, Ikeda T, Ishizuka J (2004) Effects of CO2 concentration in rhizosphere on nodulation and N2 fixation of soybean and cowpea. Soil Sci Plant Nutr 50:713–720

    Google Scholar 

  • Yurgel SN, Kahn ML (2004) Dicarboxylate transport by rhizobia. FEMS Microbiol Rev 28:489–501

    CAS  PubMed  Google Scholar 

  • Zanetti S, Hartwig UA, Lüscher A et al (1996) Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112:575–583

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zavala JA, Nabity PD, DeLucia EH (2013) An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomol 58:79–97

    CAS  PubMed  Google Scholar 

  • Zhang L, Wu D, Shi H et al (2011) Effects of elevated CO2 and N addition on growth and N2 fixation of a legume subshrub (Caragana microphylla Lam.) in temperate grassland in China. PLoS One 6(10):e26842

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Japan Society for the Promotion of Science (JSPS) for financial support for this work and for awarding a postdoc fellowship to Saad Sulieman.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saad Sulieman or Lam-Son Phan Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sulieman, S., Thao, N.P., Tran, LS.P. (2015). Does Elevated CO2 Provide Real Benefits for N2-Fixing Leguminous Symbioses?. In: Sulieman, S., Tran, LS. (eds) Legume Nitrogen Fixation in a Changing Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-06212-9_5

Download citation

Publish with us

Policies and ethics