Skip to main content

A Time-Dependent Dirichlet-Neumann Method for the Heat Equation

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 98))

Abstract

We present a waveform relaxation version of the Dirichlet-Neumann method for parabolic problem. Like the Dirichlet-Neumann method for steady problems, the method is based on a non-overlapping spatial domain decomposition, and the iteration involves subdomain solves with Dirichlet boundary conditions followed by subdomain solves with Neumann boundary conditions. However, each subdomain problem is now in space and time, and the interface conditions are also time-dependent. Using a Laplace transform argument, we show for the heat equation that when we consider finite time intervals, the Dirichlet-Neumann method converges, similar to the case of Schwarz waveform relaxation algorithms. The convergence rate depends on the length of the subdomains as well as the size of the time window. In this discussion, we only stick to the linear bound. We illustrate our results with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Assuming \(s = re^{i\vartheta }\), \(z = \sqrt{s}\), we can write for b ≥ a, \(\big\vert s^{p}G(s)\big\vert \leq \big\vert \frac{s^{p}} {\cosh (az)}\big\vert \leq \frac{2r^{p}} {\vert e^{a\sqrt{r/2}}-e^{-a\sqrt{r/2}}\vert } \rightarrow 0\), as r → ∞; and for a > b, \(\big\vert s^{p}G(s)\big\vert \leq \big\vert \frac{s^{p}} {\sinh (bz)}\big\vert \leq \frac{2r^{p}} {\vert e^{b\sqrt{r/2}}-e^{-b\sqrt{r/2}}\vert } \rightarrow 0\), as r → ∞.

References

  1. Bjørstad, P.E., Widlund, O.B.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23, 1097–1120 (1986)

    Article  MathSciNet  Google Scholar 

  2. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: An iterative method for elliptic problems on regions partitioned into substructures. Math. Comput. 46(174), 361–369 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Churchill, R.V.: Operational Mathematics, 2nd edn. McGraw-Hill, New York (1958)

    MATH  Google Scholar 

  4. Gander, M.J., Stuart, A.M.: Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gander, M.J., Kwok, F., Mandal, B.C.: Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems. (submitted). arXiv:1311.2709

    Google Scholar 

  6. Giladi, E., Keller, H.: Space time domain decomposition for parabolic problems. Numer. Math. 93, 279–313 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lelarasmee, E., Ruehli, A., Sangiovanni-Vincentelli, A.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1(3), 131–145 (1982)

    Article  Google Scholar 

  8. Lindelöf, E.: Sur l’application des méthodes d’approximations successives à l’étude des intégrales réelles des équations différentielles ordinaires. J. Math. Pures Appl. 10, 117–128 (1894)

    MATH  Google Scholar 

  9. Martini, L., Quarteroni, A.: An iterative procedure for domain decomposition methods: a finite element approach. In: Domain Decomposition Methods for PDEs, I, pp. 129–143. SIAM, Philadelphia (1988)

    Google Scholar 

  10. Martini, L., Quarteroni, A.: A relaxation procedure for domain decomposition method using finite elements. Numer. Math. 55, 575–598 (1989)

    Article  MathSciNet  Google Scholar 

  11. Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  12. Picard, E.: Sur l’application des méthodes d’approximations successives à l’étude de certaines équations différentielles ordinaires. J. Math. Pures Appl. 9, 217–271 (1893)

    MATH  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to Prof. Martin J. Gander and Dr. Felix Kwok for their constant support and stimulating suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bankim C. Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mandal, B.C. (2014). A Time-Dependent Dirichlet-Neumann Method for the Heat Equation. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_44

Download citation

Publish with us

Policies and ethics