Skip to main content

Optimized Schwarz Methods and Model Adaptivity in Electrocardiology Simulations

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Abstract

The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system, and several works have been devoted to devise effective solvers and preconditioners (Vigmond et al., Prog. Biophys. Mol. Biol. 96(1–3):3–18, 2008; Pennacchio and Simoncini, Appl. Numer. Math. 59(12):3033–3050, 2009), among others. A simplification of this model, called Monodomain problem is often adopted in order to reduce computational costs of the numerical solution of the cardiac potential. The latter model is however less accurate. A possible trade-off between accuracy and cost is a model adaptive strategy. The computational domain is subdivided into regions, coupled through an Optimized Schwarz Method, in which either the Bidomain or the Monodomain problem is solved, according to an a posteriori model error estimator following the spatio-temporal evolution of the action potential propagation. Here we present a possible implementation of this approach, following up previous works on the error estimation and the Optimized Schwarz coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clayton, R.H., Bernus, O.M., Cherry, E.M., Dierckx, H., Fenton, F.H., Mirabella, L., Panfilov, A.V., Sachse, F.B., Seemann, G., Zhang, H.: Models of cardiac tissue electrophysiology: progress, challenges and open questions, Prog. Biophys. Mol. Biol. 104, 22–48 (2011)

    Article  Google Scholar 

  2. Colli Franzone, P., Pavarino, L., Savaré, G.: Computational electrocardiology: mathematical and numerical modeling. In: Quarteroni, A., Formaggia, L., Veneziani, A. (eds.) Complex Systems in Biomedicine. Springer, Milan (2006)

    Google Scholar 

  3. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gerardo-Giorda, L., Perego, M.: Optimized Schwarz Methods for the Bidomain system in electrocardiology Esaim Math. Model Numer. Anal. 47(2), 583–608 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gerardo-Giorda, L., Mirabella, L., Nobile, F., Perego, M., Veneziani, A.: A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comput. Phys. 228, 3625–3639 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gerardo-Giorda, L., Perego, M., Veneziani, A.: Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology. Esaim Math. Model Numer. Anal. 45(2), 309–334 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Le Grice, J., Smaill, B.H., Hunter, P.J.: Laminar structure of the heart: a mathematical model. Am. J. Physiol. 272, H2466–H2476 (1997)

    Google Scholar 

  8. Lines, G.T., Buist, M.L., Grottum, P., Pullan, A.J., Sundnes, J., Tveito, A.: Mathematical models and numerical methods for the forward problem in cardiac electrophysiology Comput. Vis. Sci. 5, 215–239 (2003)

    Article  MATH  Google Scholar 

  9. Mirabella, L., Nobile, F., Veneziani, A.: An a posteriori error estimator for model adaptivity in electrocardiology. Comput. Methods Appl. Mech. Eng. 200(37–40), 2727–2737 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pavarino, L.F., Scacchi, S.: Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31(1), 420–443 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pennacchio, M., Simoncini, V.: Algebraic multigrid preconditioners for the bidomain reactiondiffusion system. Appl. Numer. Math. 59(12), 3033–3050 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Potse, M., Dubé, B., Richer, J., Vinet, A.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12), 2425–2435 (2006)

    Article  Google Scholar 

  13. Rogers, J., McCulloch, A.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994)

    Article  Google Scholar 

  14. Sachse, F.B.: Computational Cardiology. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  15. Vigmond, E.J., Weber dos Santos, R., Prassl, A.J., Deo, M., Plank, G.: Solvers for the caridac bidomain equations. Prog. Biophys. Mol. Biol. 96(1–3), 3–18 (2008)

    Google Scholar 

  16. Trayanova, N.: Defibrillation of the heart: insights into mechanisms from modelling studies. Exp. Physiol. 91, 323–337 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Gerardo-Giorda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gerardo-Giorda, L., Mirabella, L., Perego, M., Veneziani, A. (2014). Optimized Schwarz Methods and Model Adaptivity in Electrocardiology Simulations. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_34

Download citation

Publish with us

Policies and ethics