Skip to main content

Space–Time Domain Decomposition for Mixed Formulations of Diffusion Equations

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Abstract

Flow and transport problems in porous media are well-known for their high computational cost. In the far field simulation of an underground nuclear waste disposal site, one has to work with extremely different length and time scales, and highly variable coefficients while satisfying strict accuracy requirements. One strategy for tackling these difficulties is to apply a non-overlapping domain decomposition method which allows local adaptation in both space and time and makes possible the use of parallel algorithms. The substructuring method with a Steklov Poincaré operator, which is widely used by engineers for steady problems with strong heterogeneities, is a promising option. The optimized Schwarz waveform relaxation (OSWR) method, which has been developed over the last decade for finite element and finite volume methods, is another potential choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennequin, D., Gander, M.J., Halpern, L.: A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comput. 78, 185–223 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. DeRoeck, Y.H., Tallec, P.L.: Analysis and test of a local domain decomposition preconditioner. In: Glowinski, R., Kuznetsov, Y., Meurant, G., Périaux, J., Widlund, O. (eds.) Proceedings of the 4th International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia (1991)

    Google Scholar 

  3. Douglas, J., Leme, P.P., Roberts, J., Wang, J.: A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. Numer. Math. 65, 95–108 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gander, M.J., Halpern, L., Nataf, F.: Optimized Schwarz waveform relaxation method for the one dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gander, M.J., Japhet, C., Maday, Y., Nataf, F.: A new cement to glue non-conforming grids with Robin interface conditions: the finite element case. In: Kornhuber, R., Hoppe, R.H.W., Périaux, J., Pironneau, O., Widlund, O.B., Xu, J. (eds.) Proceedings of the 5th International Conference on Domain Decomposition Methods. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 259–266. Springer, Berlin (2005)

    Chapter  Google Scholar 

  6. Gander, M.J., Halpern, L., Kern, M.: A Schwarz waveform relaxation method for advection-diffusion-reaction problems with discontinuous coefficients and non-matching grids. In: Widlund, O., Keyes, D.E. (eds.) Decomposition Methods in Science and Engineering XVI, pp. 916–920. Springer, Heidelberg (2007)

    Google Scholar 

  7. Halpern, L., Japhet, C., Omnes, P.: Nonconforming in time domain decomposition method for porous media applications. In: Pereira, J.C.F., Sequeira, A. (eds.) Proceedings of the 5th European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal (2010)

    Google Scholar 

  8. Halpern, L., Japhet, C., Szeftel, J.: Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XIX, pp. 133–140 (2011)

    Google Scholar 

  9. Hoang, T.T.P., Jaffré, J., Japhet, C., Kern, M., Roberts, J.E.: Domain decomposition methods for time-dependent diffusion problems in mixed formulations. Research report, No 8271, HAL: inria-00803796. http://hal.inria.fr/hal-00803796/ (2013)

  10. Eriksson, K., Johnson, C., Thomée, V.: Time discretization of parabolic problems by discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér. 19(4), 611–643 (1985)

    MATH  Google Scholar 

  11. Kwok, F.: Neumann-Neumann waveform relaxation for the time-dependent heat equation. In: Erhel, J., Gander, M.J., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds.) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2014)

    Google Scholar 

  12. Li, J., Arbogast, T., Huang, Y.: Mixed methods using standard conforming finite elements. Comput. Methods Appl. Mech. Eng. 198, 680–692 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comput. 65, 1387–1401 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by ANDRA, the French Agency for Nuclear Waste Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi-Thao-Phuong Hoang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoang, TTP., Jaffré, J., Japhet, C., Kern, M., Roberts, J. (2014). Space–Time Domain Decomposition for Mixed Formulations of Diffusion Equations. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_26

Download citation

Publish with us

Policies and ethics