Skip to main content

Strongly Residual Coordinates over A[x]

  • Conference paper
  • First Online:
Book cover Automorphisms in Birational and Affine Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 79))

Abstract

For a commutative ring A, a polynomial fA[x][n] is called a strongly residual coordinate if f becomes a coordinate (over A) upon going modulo x, and f becomes a coordinate (over A[x, x −1]) upon inverting x. We study the question of when a strongly residual coordinate in A[x][n] is a coordinate, a question closely related to the Dolgachev–Weisfeiler conjecture. It is known that all strongly residual coordinates are coordinates for n = 2 over an integral domain of characteristic zero. We show that a large class of strongly residual coordinates that are generated by elementaries over A[x, x −1] are in fact coordinates for arbitrary n, with a stronger result in the n = 3 case. As an application, we show that all Vénéreau-type polynomials are 1-stable coordinates.

MSC : 14R10, 14R25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some authors have used the term x-residual coordinate instead; however, as the definition does not depend on the choice of the variable x, we will stick with residual coordinate.

  2. 2.

    Our construction provides a different coordinate system than Freudenburg’s.

References

  1. S.S. Abhyankar, T.T. Moh, Embeddings of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975)

    MATH  MathSciNet  Google Scholar 

  2. T. Asanuma, Polynomial fibre rings of algebras over Noetherian rings. Invent. Math. 87, 101–127 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Berson, A. van den Essen, D. Wright, Stable tameness of two-dimensional polynomial automorphisms over a regular ring. Adv. Math. 230, 2176–2197 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. S.M. Bhatwadekar, A. Roy, Some results on embedding of a line in 3-space. J. Algebra 142, 101–109 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Daigle, G. Freudenburg, Families of affine fibrations, in Symmetry and Spaces. Progress in Mathematics, vol. 278 (Birkhäuser, Boston, 2010), pp. 35–43

    Google Scholar 

  6. G. Freudenburg, The Vénéreau polynomials relative to \(\mathbb{C}^{{\ast}}\)-fibrations and stable coordinates, in Affine Algebraic Geometry (Osaka University Press, Osaka, 2007), pp. 203–215

    Google Scholar 

  7. E. Hamann, On the R-invariance of R[x]. J. Algebra 35, 1–16 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Kaliman, S. Vénéreau, M. Zaidenberg, Simple birational extensions of the polynomial algebra \(\mathbb{C}^{[3]}\). Trans. Am. Math. Soc. 356, 509–555 (2004) (electronic)

    Google Scholar 

  9. T. Kambayashi, M. Miyanishi, On flat fibrations by the affine line. Ill. J. Math. 22, 662–671 (1978)

    MATH  MathSciNet  Google Scholar 

  10. T. Kambayashi, D. Wright, Flat families of affine lines are affine-line bundles. Ill. J. Math. 29, 672–681 (1985)

    MATH  MathSciNet  Google Scholar 

  11. D. Lewis, Vénéreau-type polynomials as potential counterexamples. J. Pure Appl. Algebra 217, 946–957 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Russell, Simple birational extensions of two dimensional affine rational domains. Compos. Math. 33, 197–208 (1976)

    MATH  Google Scholar 

  13. A. Sathaye, Polynomial ring in two variables over a DVR: A criterion. Invent. Math. 74, 159–168 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. I. P. Shestakov, U.U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17, 197–227 (2004) (electronic)

    Google Scholar 

  15. M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace C 2. J. Math. Soc. Jpn. 26, 241–257 (1974)

    Article  MATH  Google Scholar 

  16. A. van den Essen, Three-variate stable coordinates are coordinates. Radboud University Nijmegan Technical Report No. 0503 (2005)

    Google Scholar 

  17. A. van den Essen, P. van Rossum, Coordinates in two variables over a \(\mathbb{Q}\)-algebra. Trans. Am. Math. Soc. 356, 1691–1703 (2004) (electronic)

    Google Scholar 

  18. S. Vénéreau, Automorphismes et variables de l’anneau de polynômes A[y 1, , y n ]. Ph.D. thesis, Université Grenoble I, Institut Fourier, 2001

    Google Scholar 

Download references

Acknowledgements

The author would like to thank David Wright, Brady Rocks, and Eric Edo for helpful discussions and feedback. The author is also indebted to the referee for several helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lewis, D. (2014). Strongly Residual Coordinates over A[x]. In: Cheltsov, I., Ciliberto, C., Flenner, H., McKernan, J., Prokhorov, Y., Zaidenberg, M. (eds) Automorphisms in Birational and Affine Geometry. Springer Proceedings in Mathematics & Statistics, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-05681-4_23

Download citation

Publish with us

Policies and ethics