Skip to main content

Flexibility Properties in Complex Analysis and Affine Algebraic Geometry

  • Conference paper
  • First Online:
Book cover Automorphisms in Birational and Affine Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 79))

Abstract

In the last decades affine algebraic varieties and Stein manifolds with big (infinite-dimensional) automorphism groups have been intensively studied. Several notions expressing that the automorphisms group is big have been proposed. All of them imply that the manifold in question is an Oka–Forstnerič manifold. This important notion has also recently merged from the intensive studies around the homotopy principle in Complex Analysis. This homotopy principle, which goes back to the 1930s, has had an enormous impact on the development of the area of Several Complex Variables and the number of its applications is constantly growing. In this overview chapter we present three classes of properties: (1) density property, (2) flexibility, and (3) Oka–Forstnerič. For each class we give the relevant definitions, its most significant features and explain the known implications between all these properties. Many difficult mathematical problems could be solved by applying the developed theory, we indicate some of the most spectacular ones.

2010 Mathematics Subject Classification. Primary 32M05. Secondary 14L24, 14L30, 32E10, 32M17, 32Q28.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    F. Kutzschebauch was partially supported by Schweizerischer Nationalfond grant 200021-140235/1.

  2. 2.

    Recall that an open subset U of X is Runge if any holomorphic function on U can be approximated by global holomorphic functions on X in the compact-open topology. Actually, for X Stein by Cartan’s Theorem A this definition implies more: for any coherent sheaf on X its section over U can be approximated by global sections.

References

  1. E. Andersén, Volume-preserving automorphisms of \(\mathbb{C}^{n}\). Complex Variables Theory Appl. 14(1–4), 223–235 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Andersén, Complete vector fields on \((\mathbb{C}^{{\ast}})^{n}\). Proc. Am. Math. Soc. 128(4), 1079–1085 (2000)

    Article  MATH  Google Scholar 

  3. E. Andersén, L. Lempert, On the group of holomorphic automorphisms of \(\mathbb{C}^{n}\). Invent. Math. 110(2), 371–388 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups. Duke Math. J. 162(4), 767–823 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Andrist, E. Fornaess Wold, The complement of the closed unit ball in \(\mathbb{C}^{3}\) is not subelliptic. arXiv:1303.1804 (2013)

    Google Scholar 

  6. F. Donzelli, Algebraic density property of Danilov-Gizatullin surfaces. Math. Z. 272(3–4), 1187–1194 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Donzelli, A. Dvorsky, S. Kaliman, Algebraic density property of homogeneous spaces. Transform. Groups 15(3), 551–576 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Derksen, F. Kutzschebauch, Global holomorphic linearization of actions of compact Lie groups on \(\mathbb{C}^{n}\). Contemp. Math. 222, 201–210 (1999)

    Article  MathSciNet  Google Scholar 

  9. H. Derksen, F. Kutzschebauch, Nonlinearizable holomorphic group actions. Math. Ann. 311(1), 41–53 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Y. Eliashberg, M. Gromov, Embeddings of Stein manifolds of dimension n into the affine space of dimension \(3n/2 + 1\). Ann. Math. 136(2)(1), 123–135 (1992)

    Google Scholar 

  11. H. Flenner, S. Kaliman, M. Zaidenberg The Gromov-Winkelmann theorem for flexible varieties. arXiv:1305.6417 (2013)

    Google Scholar 

  12. O. Forster, Plongements des variétés de Stein. Comment. Math. Helv. 45, 170–184 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Forstnerič, Oka manifolds. C. R. Acad. Sci. Paris Ser. I 347, 1017–1020 (2009)

    Article  MATH  Google Scholar 

  14. F. Forstnerič, Stein Manifolds and Holomorphic Mappings. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 56 (Springer, Berlin, 2011)

    Google Scholar 

  15. F. Forstnerič, F. Lárusson. Survey of Oka theory. New York J. Math. 17a, 11–38 (2011)

    Google Scholar 

  16. F. Forstneri č, T. Ritter, Oka properties of ball complements. arXiv:1303.2239 (2013)

    Google Scholar 

  17. F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of \(\mathbb{C}^{n}\). Invent. Math. 112(2), 323–349 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Forstneric, E.F. Wold, Embeddings of infinitely connected planar domains into C 2. Anal. PDE 6(2), 499–514 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Forstneric, E.F. Wold Bordered Riemann surfaces in \(\mathbb{C}^{2}\). J. Math. Pures Appl. 91(1), 100–114 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann. 135, 263–273 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Grauert, H. Kerner, Approximation von holomorphen Schnittflächen in Faserbündeln mit homogener Faser. Arch. Math. 14, 328–333 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles. J. Am. Math. Soc. 2 851–897 (1989)

    MATH  MathSciNet  Google Scholar 

  23. P. Heinzner, F. Kutzschebauch, An equivariant version of Grauert’s Oka principle. Invent. Math. 119, 317–346 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. A.T. Huckleberry, Actions of groups of holomorphic transformations. Several Complex Variables, VI. Encyclopaedia of Mathematical Sciences, vol. 69 (Springer, 1990), 143–196

    Google Scholar 

  25. B. Ivarsson, Kutzschebauch, F. Holomorphic factorization of mappings into \(SL_{n}(\mathbb{C})\). Ann. Math. 175(1), 45–69 (2012)

    Google Scholar 

  26. S. Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of k n to automorphisms of k n. Proc. Am. Math. Soc. 113(2), 325–333 (1991)

    MATH  MathSciNet  Google Scholar 

  27. S. Kaliman, F. Kutzschebauch Criteria for the density property of complex manifolds. Invent. Math. 172(1), 71–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Kaliman, F. Kutzschebauch, Density property for hypersurfaces \(uv = p(\bar{x})\). Math. Z. 258(1), 115–131 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Kaliman, F. Kutzschebauch, On the present state of the Andersen-Lempert theory, In: Affine Algebraic Geometry: The Russell Festschrift. CRM Proceedings and Lecture Notes, vol. 54 (Centre de Recherches Mathématiques, 2011), pp. 85–122

    Google Scholar 

  30. S. Kaliman, F. Kutzschebauch, Algebraic volume density property of affine algebraic manifolds, Invent. Math. 181(3) (2010) 605–647

    Article  MATH  MathSciNet  Google Scholar 

  31. F. Kutzschebauch, Compact and reductive subgroups of the group of holomorphic automorphisms of \(\mathbb{C}^{n}\). Singularities and complex analytic geometry (Kyoto, 1997). Sūrikaisekikenkyūsho Kōkyūroku 1033, 81–93 (1998)

    Google Scholar 

  32. F. Kutzschebauch, F. Larusson, G.W. Schwarz, An Oka principle for equivariant isomorphisms. J. Reine Angew. Math. p. 22. DOI 10.1515/crelle-2013-0064

    Google Scholar 

  33. F. Kutzschebauch, S. Lodin, Holomorphic families of non-equivalent embeddings and of holomorphic group actions on affine space. Duke Math. J. 162, 49–94 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. F. Kutzschebauch, A. Liendo, M. Leuenberger, On the algebraic density property for affine toric varieties, preprint (2013)

    Google Scholar 

  35. F. Lárusson, Model structures and the Oka principle. J. Pure Appl. Algebra 192(1–3), 203–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. K. J. Ramspott, Stetige und holomorphe Schnitte in Bündeln mit homogener Faser. Math. Z. 89, 234–246 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Schürmann, Embeddings of Stein spaces into affine spaces of minimal dimension. Math. Ann. 307(3), 381–399 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. G.W. Schwarz, Exotic algebraic group actions. C. R. Acad. Sci. Paris Sér. I Math. 309, 89–94 (1989)

    MATH  Google Scholar 

  39. M. Suzuki, Sur les oprations holomorphes du groupe additif complexe sur l’espace de deux variables complexes. Ann. Sci. Scuola Norm. Sup. 10(4), 517–546 (1977)

    MATH  Google Scholar 

  40. D. Varolin, The density property for complex manifolds and geometric structures. J. Geom. Anal. 11(1), 135–160 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Varolin, The density property for complex manifolds and geometric structures. II. Int. J. Math. 11(6), 837–847 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. E.F. Wold, Embedding Riemann surfaces properly into \(\mathbb{C}^{2}\). Int. J. Math. 17(8), 963–974 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kutzschebauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kutzschebauch, F. (2014). Flexibility Properties in Complex Analysis and Affine Algebraic Geometry. In: Cheltsov, I., Ciliberto, C., Flenner, H., McKernan, J., Prokhorov, Y., Zaidenberg, M. (eds) Automorphisms in Birational and Affine Geometry. Springer Proceedings in Mathematics & Statistics, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-05681-4_22

Download citation

Publish with us

Policies and ethics