Skip to main content

SRLS Beam Instrumentation and Diagnostics

  • Living reference work entry
  • First Online:
  • 332 Accesses

General Introduction

Beam instrumentation and diagnostics for accelerator-based user facilities like synchrotron radiation light sources (SRLS) and free electron lasers (FELs) needs to provide a full set of measurement equipment for supporting all modes and states of operation. In this respect, the following major tasks and application areas of beam diagnostics can be identified:

  • Support of accelerator commissioning and user facility start-up by providing information about all relevant electron (or positron, possibly also photon) beam parameters within an extended dynamic range at reduced resolution and bandwidth.

  • Provision of online data about all relevant beam parameters to the operators in the control room and for the execution of automated measurement procedures, allowing day-by-day operation of a user facility in a reliable and reproducible manner. This may also include input to machine interlock and protection systems.

  • Provision of noninvasive beam measurements as inputs to a set...

This is a preview of subscription content, log in via an institution.

References

  • M. Aiba et al., Ultra low vertical emittance at SLS through systematic and random optimization. NIM-A 694, 133–139 (2012)

    Article  ADS  Google Scholar 

  • E. Al-Dmour et al., Vacuum system design for the MAX IV 3 GeV ring, in Proceedings of IPAC 2011, San Sebastian (2011), p. 1554

    Google Scholar 

  • R. Amirikas et al., Proceedings of NANOBEAM2005, 36th ICFA Advanced Beam Dynamics Workshop, p. 202; Report No. EUROTeVReport-2005-023

    Google Scholar 

  • Å. Andersson et al., Determination of small vertical electron beam profile and emittance at the swiss light source. NIM-A 592, 437–446 (2008)

    Article  ADS  Google Scholar 

  • C. Bloomer et al., Observation and improvement of the long term beam stability using X-ray beam position monitors at DLS, in Proceedings of IPAC 2010, Kyoto (2010), p. 2797

    Google Scholar 

  • M.J. Boland et al., Intensity imbalance optical interferometer beam size monitor, in Proceedings of IBIC 2012, Tsukuba (2012), p. 566

    Google Scholar 

  • M. Born, E. Wolf, Principle of Optics (Pergamon Press Ltd., New York, 1980)

    Google Scholar 

  • O. Chubar, P. Elleaume, Accurate and efficient computation of synchrotron radiation in the near field region, in Proceedings of EPAC 1998, Stockholm (1998), p. 1177. See also: http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/SRW

  • D. Dowell et al., LCLS injector drive laser, in Proceedings of PAC 2007, Albuquerque (2007), p. 1317

    Google Scholar 

  • P. Elleaume et al., Measuring beam sizes and ultra-small electron emittances using an X-ray pinhole camera. J. Synchrotron Radiat. 2, 209 (1995)

    Article  Google Scholar 

  • Ferianis, Images are taken from M. Ferianis’ talk about Longitudinal Diagnostics, given at the 2008 CERN Accelerator School on Beam Diagnostics in Dourdan, France (2008). See also: https://cas.web.cern.ch/cas/France-2008/Lectures/Ferianis-Longit-2.pdf

  • FESCA-200, (C6138) Femto-Second Streak Camera Operation Manual, Hamamatsu Photonics K.K., Systems Division, 812 Joko-cho, Higashi-ku, Hamamatsu City, 431–3196, Japan

    Google Scholar 

  • Hamamatsu, Hamamatsu guide to streak cameras, http://www.hamamatsu.com/resources/pdf/sys/e_streakh.pdf

  • Henke, http://www.cxro.lbl.gov/x-ray-data-booklet

  • R.O. Hettel, Beam stability at light sources. Rev. Sci. Instrum. 73, 1396 (2002). doi:10.1063/1.1435812

    Article  ADS  Google Scholar 

  • Hofmann, Physics of Synchrotron Radiation (2004). ISBN:9780521308267, http://www.cambridge.org/ch/academic/subjects/physics/particle-physics-and-nuclear-physics/physics-synchrotron-radiation?format=HB

  • T. Honda et al., Suppression of bunched beam induced heating at the DCCT toroid, in Proceedings of EPAC 1998, Stockholm (1998), p. 1526

    Google Scholar 

  • K. Ida et al., Measurement of an electron beam size with a beam profile monitor using fresnel zone plates. Nucl. Instrum. Methods Phys. Res. A 506, 49 (2003)

    ADS  Google Scholar 

  • I-Tech, Detailed information about the commercially available LIBERA Brilliance BPM electronics is available under: http://www.i-tech.si/

  • B. Keil et al., A generic BPM electronics platform for European XFEL, SwissFEL and SLS, in Proceedings of IBIC 2012, Tsukuba (2012), p. 11

    Google Scholar 

  • G. Kube et al., PETRA III diagnostics beamline for emittance measurements, in Proceedings of IPAC 2010, Kyoto (2010), p. 909

    Google Scholar 

  • D. Lipka, Heating of a DCCT and a FCT due to wake losses in PETRA III, in Simulations and Solutions, Talk Presented at the Workshop on Simulation of Power Dissipation & Heating from Wake Losses, Oxford (2013). All presentations can be accessed through: http://www.diamond.ac.uk/Home/Events/2013/Simulation-of-Power-Dissipation---Heating-from-Wake-Losses.html

  • MATLAB – The Language for Technical Computing. Product web-page: http://www.mathworks.ch/products/matlab/

  • A.A. Michelson, Measurement of the diameter of alpha orionis with the interferometer. Astrophys. J. (PDF) 53, 249–59 (1921). Bibcode:1921ApJ....53..249M. doi:10.1086/142603

    Google Scholar 

  • T. Naito, T. Mitsuhashi, Very small beam-size measurement by a reflective synchrotron radiation interferometer. Phys. Rev. Spec. Topics – Accel. Beams 9, 122802 (2006)

    Google Scholar 

  • A. Olmos, F. Pérez, ALBA-CELLS, Cerdanyola, Barcelona, Spain, G. Rehm, Diamond Light Source, Oxfordshire, U.K. “Matlab code for bpm button geometry computation”, DIPAC07 (2007). For download of the BPM button design tool go to: http://www.cells.es/Divisions/Accelerators/RF_Diagnostics/Diagnostics/OrbitPosition/Tools/BPMs_GUI

  • Y. Otake et al., Beam monitor system for an X-ray free electron laser and compact laser. Phys. Rev. Spec. Topics – Accel. Beams 16, 042802 (2013)

    Google Scholar 

  • G. Rehm, Recent development of diagnostics on 3rd generation light sources, in Proceedings of EPAC 2008, Genoa (2008), p. 1016

    Google Scholar 

  • T.R. Renner et al., Design and performance of the ALS diagnostics beam line. Rev. Sci. Instrum. 67, 3368 (1996)

    Article  ADS  Google Scholar 

  • H. Sakai et al., Improvement of fresnel zone plate beam profile monitor and application to ultralow emittance beam profile measurements. Phys. Rev. Spec. Topics – Accel. Beams 10, 042801 (2007)

    Google Scholar 

  • T. Schilcher, RF Applications in Digital Signal Processing. Lecture Given at the CERN Accelerator School 2007 in Sigtuna, CERN-2008-003, 249 (2008). See http://cds.cern.ch/record/1003726/files/CERN-2008-003.pdf?version=1

  • R. Shafer, Beam position monitoring, in AIP Conference Proceedings, Upton, vol. 212 (1989), pp. 26–58

    Google Scholar 

  • SiliconSensors, Avalanche Photo Diode from Silicon Sensors, see: http://www.silicon-sensor.de

  • S. Smith, Beam position monitor engineering, SLAC-Pub-7244, July 1996

    Google Scholar 

  • K.B. Unser, The parametric current transformer, a beam current monitor developed for LEP, in 3rd Annual Workshop on Accelerator Instrumentation, Newport News, ed. by W. Barry, P.K. Kloppel (AIP, New York, 1991), pp. 266–275. [AIP Conference Proceedings, 252]

    Google Scholar 

  • T. Wanatabe et al., Overall comparison of subpicosecond electron beam diagnostics by the polychromator, the interferometer and the femtosecond streak camera. Nucl. Instrum. Methods Phys. Res. A 480, 315–327 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schlott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Schlott, V. (2015). SRLS Beam Instrumentation and Diagnostics. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics