Skip to main content

Hybrid Pixel Photon Counting X-Ray Detectors for Synchrotron Radiation

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Abstract

Detectors operated in single-photon counting mode have radically transformed basic research at synchrotron light sources since 2006. Hybrid photon counting (HPC) pixel detectors proved to be a disruptive technology for X-ray diffraction applications in the energy range from 2 to 30 keV. The main reason for this success is the accurate determination of scattering and diffraction patterns at the level of individual photons over an extremely high dynamic range.

The technology of photon counting detectors is based on segmented semiconductor sensors, which detect X-rays directly and guarantee very high stability and simple operation at room temperature. The sensors are coupled to application-specific integrated circuits (ASICs). Based on modern CMOS technology, these ASICs process the electrical signal pulses from the sensor. The implementation of energy thresholds gives counting detectors the unique capability to determine the number of photons in a specific energy range for very high local and global count rates. The digital detection and processing avoid any readout noise and permit frame rates in the range of several thousand images per second. Combining these features in one device led to a transition from CCD-based detector systems to HPC detectors for applications like protein crystallography, small-angle scattering, and surface and powder diffraction and offers new opportunities in time-resolved experiments.

This article covers the technology of HPC detectors and their usage at synchrotrons. It describes the basic principles of the sensor readout ASIC and interconnection technology and highlights the properties of the detectors. In addition details about data correction procedures are given.

This is a preview of subscription content, log in via an institution.

References

  • U.W. Arndt, Counting losses of detectors for X-rays from storage rings. J. Phys. E 11, 671–673 (1978)

    Article  ADS  Google Scholar 

  • ATLAS Collaboration, ATLAS detector and physics performance: technical design report, 1 CERN-LHCC-99-014 (1999)

    Google Scholar 

  • R. Ballabriga, The design and implementation in 0.13 μm CMOS of an algorithm permitting spectroscopic imaging with high spatial resolution for hybrid pixel detectors. CERN-THESIS-2010-055 (2010)

    Google Scholar 

  • R. Ballabriga et al., Characterization of the MEDIPIX3 pixel readout chip. J. Instrum. 6, C01052 (2011)

    Article  Google Scholar 

  • R. Ballabriga et al., The MEDIPIX3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J. Instrum. 8, C02016 (2013)

    Article  Google Scholar 

  • J.E. Bateman, The effect of beam time structure on counting detectors in SRS experiments. J. Synchrotron. Radiat. 7, 307–312 (2000)

    Article  Google Scholar 

  • M. Battaglia et al., R&D paths of pixel detectors for vertex tracking and radiation imaging. http://arxiv.org/abs/1208.0251 (2012)

  • R. Bellazzini et al., Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC. J. Instrum. 8, C02028 (2013)

    Article  Google Scholar 

  • R. Bellazzini et al., PIXIE III, a very large area photo-counting CMOS pixel ASIC for sharp X-ray spectral imaging. J. Instrum. 10, C01032 (2015)

    Article  Google Scholar 

  • A. Bergamaschi et al., The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. J. Synchrotron. Radiat. 17, 653–668 (2010)

    Article  Google Scholar 

  • M.J. Berger et al., XCOM: photon cross sections database. NIST, PML, radiation and biomolecular physics division (1998), http://www.nist.gov/pml/data/xcom. Accessed Aug 2014

    Google Scholar 

  • M. Bochenek et al., IBEX: versatile readout ASIC with spectral imaging capability and high count rate capability. IEEE Trans. Nucl. Sci. https://doi.org/10.1109/TNS.2018.2832464 (2018)

    Article  ADS  Google Scholar 

  • C. Broennimann et al., Synchrotron beam test with a photon-counting pixel detector. J. Synchrotron. Radiat. 7, 301306 (2000)

    Google Scholar 

  • C. Broennimann et al., Continuous sample rotation data collection for protein crystallography with the PILATUS detector. Nucl. Instrum. Methods A 510, 24–28 (2003)

    Article  ADS  Google Scholar 

  • C. Broennimann et al., The PILATUS 1M detector. J. Synchrotron. Radiat. 13, 120–130 (2006)

    Article  Google Scholar 

  • M. Campbell, 10 years of the MEDIPIX2 collaboration. Nucl. Instrum. Methods A 633, S1–S10 (2011); F. Cassol Brunner, First K-edge imaging with a Micro-CT based on the XPAD3 hybrid pixel detector. IEEE Trans Nucl Sci 60, 103–108 (2013)

    Google Scholar 

  • CMS Collaboration, CMS physics: technical design report volume 1: detector performance and software CERN-LHCC-2006-001 (2006)

    Google Scholar 

  • C.E. Cohn, The effect of deadtime on counting errors. Nucl. Instrum. Methods 41, 338–340 (1966)

    Article  ADS  Google Scholar 

  • P. Delpierre, Pixels detectors and silicon X-rays detectors. J. Phys. IV 4, C9-11–C9-18 (1994)

    Google Scholar 

  • R. Dinapoli, A radiation tolerant pixel detector system for the ALICE and LHCb experiments at CERN. CERN-THESIS-2004-066 (2004)

    Google Scholar 

  • R. Dinapoli et al., EIGER: next generation single photon counting detector for X-ray applications. Nucl. Instrum. Method A 650, 79–83 (2011)

    Article  ADS  Google Scholar 

  • R. Dinapoli et al., EIGER characterization results. Nucl. Instrum. Method A 731, 68–73 (2013)

    Article  ADS  Google Scholar 

  • T. Donath et al., Characterization of the PILATUS photon-counting pixel detector for X-ray energies from 1.75 keV to 60 keV. J. Phys. Conf. Ser. 425, 062001 (2013)

    Google Scholar 

  • P. Fischer et al., A counting pixel readout chip for imaging applications. Univ. Physikal. Inst. Bonn 97, 1–10 (1997)

    Google Scholar 

  • E.N. Gimenez, Characterization of MEDIPIX3 with synchrotron radiation. IEEE Trans. Nucl. Sci. 58, 323–332 (2011)

    Article  ADS  Google Scholar 

  • S.M. Gruner et al., Evaluation of area photon detectors by a method based on detective quantum efficiency (DQE). IEEE Trans. Nucl. Sci. 25, 562–565 (1978)

    Article  ADS  Google Scholar 

  • E.H.M. Heijne et al., The silicon micropattern detector: a dream? Nucl. Instrum. Method A 273, 615–619 (1988)

    Article  ADS  Google Scholar 

  • G. Hülsen et al., Distortion calibration of the PILATUS 1M detector. Nucl. Instrum. Methods A 548, 540–554 (2005)

    Article  ADS  Google Scholar 

  • I. Johnson et al., Capturing dynamics with Eiger, a fast-framing X-ray detector. J. Synchrotron. Radiat. 19, 1001–1005 (2012)

    Article  Google Scholar 

  • P. Kraft et al., Characterization and calibration of PILATUS detectors. IEEE Trans. Nucl. Sci. 56, 758–764 (2009a)

    Article  ADS  Google Scholar 

  • P. Kraft et al., Performance of single-photon-counting PILATUS detector modules. J. Synchrotron. Radiat. 16, 368–375 (2009b)

    Article  Google Scholar 

  • F. Krummenacher, Pixel detectors with local intelligence: an IC designer point of view. Nucl. Instrum. Methods A 305, 527–532 (1991)

    Article  ADS  Google Scholar 

  • T. Loeliger et al., The new PILATUS3 ASIC with instant retrigger capability. IEEE Nucl. Sci. Med. Imag. Conf. Rec. 1, 610–615 (2012)

    Google Scholar 

  • G. Lutz, Semiconductor Radiation Detectors (Springer, Berlin, 1997)

    MATH  Google Scholar 

  • K. Medjoubi et al., Detective quantum efficiency, modulation transfer function and energy resolution comparison between CdTe and silicon sensors bump-bonded to XPAD3S. J. Synchrotron. Radiat. 17, 486–495 (2010)

    Article  Google Scholar 

  • B.R. Pauw, Everything SAXS: small-angle scattering pattern collection and correction. J. Phys. Condens. Matter. 25, 383201 (2013)

    Article  ADS  Google Scholar 

  • D. Pennicard, H. Graafsma, Simulated performance of high-Z detectors with MEDIPIX3 readout. J. Instrum. 6, P06007 (2011)

    Google Scholar 

  • C. Ponchut, Characterization of X-ray area detectors for synchrotron beamlines. J. Synchrotron. Radiat. 13, 195–203 (2005)

    Article  Google Scholar 

  • C. Ponchut et al., Experimental comparison of pixel detector arrays and CCD-based systems for X-ray area detection on synchrotron beamlines. IEEE Trans. Nucl. Sci. 52, 1760–1765 (2005)

    Article  ADS  Google Scholar 

  • G. Potdevin et al., HORUS, an HPAD X-ray detector simulation program. J. Instrum. 4, P09010 (2009)

    Article  Google Scholar 

  • S. Procz et al., Flatfield correction optimization for energy selective X-ray imaging with MEDIPIX3. IEEE Trans. Nucl. Sci. 58, 3182–3189 (2011)

    Article  ADS  Google Scholar 

  • L. Rossi et al., Pixel Detectors (Springer, Berlin/Heidelberg/New York, 2006)

    Google Scholar 

  • B.A. Sobott et al., Synchrotron radiation hardness studies of PILATUS II. J. Synchrotron. Radiat. 16, 489–493 (2009)

    Article  Google Scholar 

  • A.C. Thompson et al., X-ray data booklet. Center for X-ray optics and advanced light source (2009). http://xdb.lbl.gov. Accessed Aug 2014

  • P. Trueb et al., Improved count rate corrections for highest data quality with PILATUS detectors. J. Synchrotron. Radiat. 19, 347–351 (2012)

    Article  Google Scholar 

  • P. Trueb et al., Bunch mode specific rate corrections for PILATUS3 detectors. J. Synchrotron. Radiat. 22, 701–707 (2015)

    Article  Google Scholar 

  • A.V. Tyazhev et al., GaAs radiation imaging detectors with an active layer thickness up to 1 mm. Nucl. Instrum. Methods A 509, 34–39 (2003)

    Article  ADS  Google Scholar 

  • M.C. Veale et al., Chromium compensated gallium arsenide detectors for X-ray and γ-ray spectroscopic imaging. Nucl. Instrum. Methods A 752, 6–14 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brönnimann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brönnimann, C., Trüb, P. (2018). Hybrid Pixel Photon Counting X-Ray Detectors for Synchrotron Radiation. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_36-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_36-2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04507-8

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Hybrid Pixel Photon Counting X-Ray Detectors for Synchrotron Radiation
    Published:
    18 September 2018

    DOI: https://doi.org/10.1007/978-3-319-04507-8_36-2

  2. Original

    Hybrid Pixel Photon Counting X-Ray Detectors for Synchrotron Radiation
    Published:
    25 February 2015

    DOI: https://doi.org/10.1007/978-3-319-04507-8_36-1