Skip to main content

Synchrotron Small-Angle X-Ray Scattering on Biological Macromolecules in Solution

  • Living reference work entry
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers

Abstract

Small-angle X-ray scattering (SAXS) is a powerful method for the structural analysis of macromolecular solutions, allowing one to study the structure of native particles and complexes and to rapidly analyze structural changes in response to variations in external conditions. On synchrotrons, SAXS benefits enormously from the high brilliance of the radiation, providing a considerable advantage for the timescale of measurements (allowing also for time-resolved experiments) and the small amounts of material required. Emerging automation of the scattering experiment, data processing, and interpretation make synchrotron solution SAXS a streamline tool for large-scale structural studies in molecular biology. In the present chapter, a brief account will be given of the basic principles of SAXS by macromolecular solutions and of the synchrotron SAXS instrumentation. The main concepts of SAXS data analysis from monodisperse solutions will be considered and the methods for computation of the overall structural parameters and ab initio low-resolution shape reconstructions will be presented. Further, approaches combining SAXS with other structural, biophysical, and biochemical techniques including validation of predicted or experimentally obtained high-resolution models in solution and identification of biologically active oligomers will be considered. Modeling methods of the quaternary structure of macromolecular complexes in terms of rigid body movements/rotations of individual subunits or domains will be reviewed. The approaches will also be considered to study oligomeric mixtures and to quantitatively characterize flexible macromolecular systems, including intrinsically unfolded proteins. The new methodological developments in SAXS will be illustrated by examples of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • M. Adrian, J. Dubochet, J. Lepault, A.W. MacDowall, Cryo-electron microscopy of viruses. Nature 308, 32–36 (1984)

    Article  ADS  Google Scholar 

  • J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, 2nd edn. (Wiley, Hoboken, 2011)

    Book  Google Scholar 

  • M. Bada, D. Walther, B. Arcangioli, S. Doniach, M. Delarue, Solution structural studies and low-resolution model of the Schizosaccharomyces pombe sap1 protein. J. Mol. Biol. 300, 563–574 (2000)

    Article  Google Scholar 

  • H.M. Berman et al., The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  ADS  Google Scholar 

  • P. Bernado, M. Blackledge, A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering. Biophys. J. 97, 2839–2845 (2009)

    Article  ADS  Google Scholar 

  • P. Bernado et al., A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc. Natl. Acad. Sci. U. S. A. 102, 17002–17007 (2005)

    Article  ADS  Google Scholar 

  • P. Bernado, E. Mylonas, M.V. Petoukhov, M. Blackledge, D.I. Svergun, Structural characterization of flexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc. 129, 5656–5664 (2007)

    Article  Google Scholar 

  • P.R. Bevington, K.D. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw, Boston, 2002).

    Google Scholar 

  • C. Blanchet et al., Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA-3, DESY). J. Appl. Cryst. 48, 431–443 (2015)

    Article  Google Scholar 

  • J. Brunner-Popela, O. Glatter, Small-angle scattering of interacting particles. I. Basic principles of a global evaluation technique. J. Appl. Cryst. 30, 431–442 (1997)

    Google Scholar 

  • P. Chacon, F. Moran, J.F. Diaz, E. Pantos, J.M. Andreu, Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys. J. 74, 2760–2775 (1998)

    Article  ADS  Google Scholar 

  • P. Chacon, J.F. Diaz, F. Moran, J.M. Andreu, Reconstruction of protein form with X-ray solution scattering and a genetic algorithm. J. Mol. Biol. 299, 1289–1302 (2000)

    Article  Google Scholar 

  • R.G. Dickinson, A.L. Raymond, The crystal structure of hexamethylene-teytramine. J. Am. Chem. Soc. 45, 22–29 (1923)

    Article  Google Scholar 

  • S. Doniach, Changes in biomolecular conformation seen by small angle X-ray scattering. Chem. Rev. 101, 1763–1778 (2001)

    Article  Google Scholar 

  • M. Dunne et al., The CD27L and CTP1L endolysins targeting clostridia contain a built-in trigger and release factor. PLOS Pathogens 10(7), e1004228 (2014)

    Google Scholar 

  • D. Durand et al., NADPH oxidase activator p67phox behaves in solution as a multidomain protein with semi-flexible linkers. J. Struct. Biol. 169, 45–53 (2010)

    Article  Google Scholar 

  • L.A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press/Springer, New York, 1987)

    Book  Google Scholar 

  • H. Fischer, M. de Oliveira Neto, H.B. Napolitano, I. Polikarpov, A.F. Craievich, Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J. Appl. Cryst. 43, 101–109 (2010)

    Article  Google Scholar 

  • D. Franke, D.I. Svergun, DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Cryst. 42, 342–346 (2009)

    Article  Google Scholar 

  • D. Franke, C.M. Jeffries, D.I. Svergun, Correlation Map, a method to quantitatively assess systematic differences for the analysis of one dimensional spectra. Nat. Methods (2015). doi:10.1038/nmeth.3358

    Google Scholar 

  • D. Franke, A.G. Kikhney, D.I. Svergun, Automated acquisition and analysis of small angle X-ray scattering data. Nucl. Inst. Methods A, 689, 52–59 (2012)

    Article  ADS  Google Scholar 

  • T. Fujisawa et al., The hydration of Ras p21 in solution during GTP hydrolysis based on solution X-ray scattering profile. J. Biochem. 115, 875–880 (1994)

    Google Scholar 

  • O. Glatter, A new method for the evaluation of small-angle scattering data. J. Appl. Cryst. 10, 415–421 (1977)

    Article  Google Scholar 

  • O. Glatter, O. Kratky (eds.), Small-Angle X-Ray Scattering (Academic, London, 1982)

    Google Scholar 

  • M.A. Graewert, D.I. Svergun, Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS). Curr. Opin. Struct. Biol. 23, 748–754 (2013)

    Article  Google Scholar 

  • A. Grishaev, Sample preparation, data collection and preliminary data analysis in biomolecular solution X-ray scattering. Curr. Protoc. Protein Sci. Chapter 17, Unit 17.14 (2012)

    Google Scholar 

  • A. Grishaev, L.A. Guo, T. Irving, A. Bax, Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling. J. Am. Chem. Soc. 132, 15484–15486 (2010)

    Article  Google Scholar 

  • J.G. Grossmann et al., X-ray Scattering using synchrotron radiation shows nitrite reductase from achromobacter xylosoxidans to be a trimer in solution. Biochemistry 32, 7360–7366 (1993)

    Article  Google Scholar 

  • A. Guinier, La diffraction des rayons X aux tres petits angles; application a l’etude de phenomenes ultramicroscopiques. Ann. Phys. 12, 161–237 (1939)

    MATH  Google Scholar 

  • A. Guinier, G. Fournet, Small-Angle Scattering of X-Rays (Wiley, New York, 1955)

    Google Scholar 

  • G. Hagelueken et al., A coiled-coil domain acts as a molecular ruler to regulate lipopolysaccharide chain length. Nat. Struct. Mol. Biol. 22, 50–56 (2015)

    Article  Google Scholar 

  • S.R. Hubbard, S.O. Hodgson, S. Doniach, Small-angle X-ray Scattering Investigation of the solution structure of troponin C. J. Bio. Chem. 263, 4151–4158 (1988)

    Google Scholar 

  • G.L. Hura et al., Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606–614 (2009)

    Article  Google Scholar 

  • J. Ilavsky, P.R. Jemian, Irena: tool suite for modeling and analysis of small-angle scattering. J. Appl. Cryst. 42(2), 347–353 (2009)

    Article  Google Scholar 

  • C. Jeffries, J. Trewhella, in Quantitative Biology: From Molecular to Cellular Systems, ed. by M.E. Wall (CRC, Boca Raton, 2012), pp. 113–151.

    Google Scholar 

  • C.M. Jeffries, M.A. Graewert, D.I. Svergun, C.E. Blanchet, Limiting radiation damage for high brilliance biological solution scattering: practical experience at the EMBL P12 beam line, PETRA III. J. Sync. Rad. 22, 273–279 (2015)

    Article  Google Scholar 

  • J.C. Kendrew et al., A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662–666 (1958)

    Article  ADS  Google Scholar 

  • N.M. Kirby et al., A low-background-intensity focusing small-angle X-ray scattering undulator beamline. J. Appl. Cryst. 46, 1670–1680 (2013)

    Article  Google Scholar 

  • S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • P.V. Konarev, V.V. Volkov, A.V. Sokolova, M.H.J. Koch, D.I. Svergun, PRIMUS – a Windows-PC based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277–1282 (2003)

    Article  Google Scholar 

  • M.B. Kozin, D.I. Svergun, Automated matching of high- and low-resolution structural models. J. Appl. Cryst. 34, 33–41 (2001)

    Article  Google Scholar 

  • A.H. Kwan, M. Mobil, P.R. Gooley, G.F. King, J.P. Mackay, Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J. 278, 687–703 (2011)

    Article  Google Scholar 

  • D. Marion, An introduction to biological NMR spectroscopy. Mol. Cell Proteomics 12, 3006–3025 (2013)

    Article  Google Scholar 

  • P.B. Moore, Small-angle scattering. information content and error analysis. J. Appl. Cryst. 13, 168–175 (1980)

    Google Scholar 

  • E. Mylonas, D.I. Svergun, Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J. Appl. Cryst. 40, 245–249 (2007)

    Article  Google Scholar 

  • S.S. Nielsen et al., BioXTAS RAW, a software program for high-throughput automated small-angle X-ray scattering data reduction and preliminary analysis. J. Appl. Cryst. 42, 959–964 (2009)

    Article  Google Scholar 

  • D. Orthaber, A. Bergmann, O. Glatter, SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Cryst. 33, 218–225 (2000)

    Article  Google Scholar 

  • K. Pearson, On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Ser. 5, 157–175 (1900)

    Article  Google Scholar 

  • M. Pelikan, G.L. Hura, M. Hammel, Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen. Physiol. Biophys. 28, 174–189 (2009)

    Article  Google Scholar 

  • M.V. Petoukhov, D.I. Svergun, Global rigid body modelling of macromolecular complexes against small-angle scattering data. Biophys. J. 89, 1237–1250 (2005)

    Article  Google Scholar 

  • M.V. Petoukhov, P.V. Konarev, A.G. Kikhney, D.I. Svergun, ATSAS 2.1 – towards automated and websupported small-angle scattering data analysis. J. Appl. Cryst. 40, 223–228 (2007)

    Google Scholar 

  • M.V. Petoukhov et al., New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Cryst. 45, 342–350 (2012)

    Article  Google Scholar 

  • F. Poitevin, H. Orland, S. Doniach, P. Koehl, M. Delarue, AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic Acids Res. 39, W184–W189 (2011)

    Article  Google Scholar 

  • C. Pons et al., Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data. J. Mol. Biol. 403, 217–230 (2010)

    Article  Google Scholar 

  • G. Porod, in Small-Angle X-Ray Scattering, ed. by O. Glatter, O. Kratky (Academic, London, 1982)

    Google Scholar 

  • R.P. Rambo, J.A. Tainer, Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013)

    Article  ADS  Google Scholar 

  • A.R. Round et al., Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33. J. Appl. Cryst. 41, 913–917 (2008)

    Article  Google Scholar 

  • D. Russel et al., Putting the pieces together: integrative structure determination of macromolecular assemblies. PLoS Biol. 10, e1001244 (2012)

    Article  Google Scholar 

  • D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H.J. Wolfson, PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–367 (2005).

    Article  Google Scholar 

  • D. Schneidmann-Duhovny, M. Hammel, A. Sali, Macromolecular docking restrained by a small angle X-ray scattering profile. J. Struct. Biol. 173, 461–471 (2010a)

    Article  Google Scholar 

  • D. Schneidman-Duhovny, M. Hammel, A. Sali, FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–544 (2010b)

    Article  Google Scholar 

  • S. Skou, R.E. Gillilan, N. Ando, Synchrotron-based small-angle X-ray scattering of proteins in solution. Nat. Protocols 9(7), 1727–1739 (2014)

    Article  Google Scholar 

  • F. Spinozzi, M. Beltramini, QUAFIT: a novel method for the quaternary structure determination from small-angle scattering data. Biophys. J. 103, 511–521 (2012)

    Article  ADS  Google Scholar 

  • H.B. Stuhrmann, New method for determination of surface form and internal structure of dissolved globular proteins from small-angle X-ray measurements. Z. Phys. Chem. 72, 177–182 (1977)

    Article  Google Scholar 

  • D.I. Svergun, Determination of the regnlarization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25, 495–503 (1992)

    Article  Google Scholar 

  • D.I. Svergun, Solution scattering from biopolymers: advanced contrast-variation data analysis. Acta Cryst. A50, 391–402 (1994)

    Article  Google Scholar 

  • D.I. Svergun, Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999)

    Article  ADS  Google Scholar 

  • D.I. Svergun, K.H. Nierhaus, A map of protein-rRNA distribution in the 70S Escherichia coli ribosome. J. Biol. Chem. 275, 14432–14439 (2000)

    Article  Google Scholar 

  • D.I. Svergun, A.V. Semenyuk, L.A. Feigin, Scmall-angle-scattering-data treatment by the regularization method. Acta Cryst. A44, 244–250 (1988)

    Article  Google Scholar 

  • D.I. Svergun, C. Barberato, M.H.J. Koch, CRYSOL – a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768–773 (1995)

    Article  Google Scholar 

  • D.I. Svergun, V.V. Volkov, M.B. Kozin, H.B. Stuhrmann, New developments in direct shape determination from small-angle scattering. 2. Uniqueness. Acta Cryst. A52, 419–426 (1996)

    Google Scholar 

  • D.I. Svergun, M.V. Petoukhov, M.H.J. Koch, Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001)

    Article  Google Scholar 

  • D.I. Svergun, M.H.J. Koch, P.A. Timmins, R.P. May, Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules (Oxford University Press, Oxford/New York, 2013)

    Book  Google Scholar 

  • D. Vanhecke et al., Cryo-electron tomography: methodology, developments and biological applications. J. Microsc. 242, 221–227 (2011)

    Article  Google Scholar 

  • D. Vigil, S.C. Gallagher, J. Trewhella, A.E. Garcia, Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Biophys. J. 80, 2082–2092 (2001)

    Article  Google Scholar 

  • V.V. Volkov, D.I. Svergun, Uniqueness of ab initio shape determination in small angle scattering. J. Appl. Cryst. 36, 860–864 (2003)

    Article  Google Scholar 

  • M.P. Williamson, T.F. Havel, K. Wuethrich, Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J. Mol. Biol. 182, 295–315 (1985)

    Article  Google Scholar 

  • A. Wlodawer, W. Minor, Z. Dauter, M. Jaskolski, Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J. 280, 5705–5736 (2013)

    Article  Google Scholar 

  • W. Wriggers, Conventions and workflows for using Situs. Acta Cryst. D 68, 344–351 (2012)

    Article  Google Scholar 

  • S.C. Yang, L. Blachowicz, L. Makowski, B. Roux, Multidomain assembled states of Hck tyrosine kinase in solution. Proc. Natl. Acad. Sci. U. S. A. 107, 15757–15762 (2010)

    Article  ADS  Google Scholar 

  • X. Zhang et al., Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. U. S. A. 105, 1867–1872 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Franke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Franke, D., Svergun, D.I. (2015). Synchrotron Small-Angle X-Ray Scattering on Biological Macromolecules in Solution. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics