Skip to main content

Brilliant Light Sources driven by Laser-Plasma Accelerators

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers

Abstract

Brilliant light sources, such as free-electron lasers, are an essential tool for a multidisciplinary research community, ranging from medicine and life sciences to fundamental physics, as they enable new insights into processes on atomic length and time scales. Laser-plasma accelerators bear the promise to drive future compact free-electron lasers. A high-energy laser pulse excites a density perturbation in a plasma, generating large electric fields, which can accelerate electron beams to GeV scale energies over only a few centimeters acceleration length. Synchronized to an optical laser and with intrinsic pulse lengths on a few-femtosecond scale, an X-ray beam derived from such a bunch promises highest temporal resolution. Here, an introduction to the basic physics of laser-plasma acceleration and its recent development will be given, followed by a brief discourse on the theory of free-electron lasers. Based on this, we discuss the challenges arising when designing a laser-plasma-based free-electron laser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • K.L.F. Bane, G. Stupakov, Resistive wall wakefield in the LCLS undulator beam pipe, 2004.

    Book  Google Scholar 

  • R. Bonifacio, C. Pellegrini, L.M. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984). doi:10.1016/0030-4018(84) 90105-6

    Article  ADS  Google Scholar 

  • R. Bonifacio, L.D.S. Souza, B. McNeil, Emittance limitations in the free electron laser. Opt. Commun. 93, 179 (1992). http://dx.doi.org/10.1016/0030-4018(92)90525-V

    Article  ADS  Google Scholar 

  • A. Buck, M. Nicolai, K. Schmid, C.M.S. Sears, A. Savert, J.M. Mikhailova, F. Krausz, M.C. Kaluza, L. Veisz, Real-time observation of laser-driven electron acceleration. Nat. Phys. 7(7), 543–548, 07 2011. http://dx.doi.org/10.1038/nphys1942

    Google Scholar 

  • S. Bulanov, N. Naumova, F. Pegoraro, J. Sakai, Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58(5), R5257–R5260 (1998). doi:10.1103/PhysRevE.58.R5257

    Article  ADS  Google Scholar 

  • L. Campbell, B. McNeil, Puffin: a three dimensional, unaveraged free electron laser simulation code. Phys. Plasmas 19, 093119 (2012). http://dx.doi.org/10.1063/1. 4752743

    Google Scholar 

  • M. Chen, E. Esarey, C. Geddes, E. Cormier-Michel, C. Schroeder, S. Bulanov, C. Benedetti, L. Yu, S. Rykovanov, D. Bruhwiler, W. Leemans, Electron injection and emittance control by transverse colliding pulses in a laser-plasma accelerator. Phys. Rev. Spec. Top. Accel. Beams 17(5), 051303 (2014). doi:10.1103/PhysRevSTAB.17.051303

    Google Scholar 

  • J.A. Clarke, The Science and Technology of Undulators and Wigglers (Oxford University Press, Oxford, 2006)

    Google Scholar 

  • J.M. Dawson, Nonlinear Electron oscillations in a cold plasma. Phys. Rev. 113(2), 383–387 (1959). doi:10.1103/PhysRev.113.383

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • I. Dornmair, K. Floettmann, A.R. Maier, Emittance conservation by tailored focusing profiles in a plasma accelerator. Phys. Rev. ST Accel. Beams 18, 041302 (2015). doi:10.1103/PhysRevSTAB.18.041302

    Article  ADS  Google Scholar 

  • E. Esarey, M. Pilloff, Trapping and acceleration in nonlinear plasma waves. Phys. Plasmas (1994-present) 2(5), 1432–1436 (1995). doi:10.1063/1.871358

    Google Scholar 

  • E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting, P. Sprangle, Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79(14), 2682–2685 (1997). doi:10.1103/PhysRevLett.79.2682

    Article  ADS  Google Scholar 

  • E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1285 (2009). doi:10.1103/RevModPhys.81. 1229

    Article  ADS  Google Scholar 

  • J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka, A laser–plasma accelerator producing monoenergetic electron beams. Nature 431(7008), 541–544 (2004). doi:10.1038/nature02963

    Article  ADS  Google Scholar 

  • J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444(7120), 737–739 (2006). doi:10.1038/nature05393

    Article  ADS  Google Scholar 

  • J. Faure, C. Rechatin, O. Lundh, L. Ammoura, V. Malka, Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel. Phys. Plasmas (1994-present) 17(8), 083107 (2010). doi:10.1063/1. 3469581

    Google Scholar 

  • K. Floettmann, Some basic features of the beam emittance. Phys. Rev. ST Accel. Beams 6, 034202 (2003a). http://link.aps.org/doi/10.1103/PhysRevSTAB.6.034202

    Article  ADS  Google Scholar 

  • K. Floettmann, Some basic features of the beam emittance. Phys. Rev. ST Accel. Beams 6, 034202 (2003b). doi:10.1103/PhysRevSTAB.6.034202

    Article  ADS  Google Scholar 

  • C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431(7008), 538–541 (2004). doi:10. 1038/nature02900

    Google Scholar 

  • C.G.R. Geddes, K. Nakamura, G.R. Plateau, C. Toth, E. Cormier-Michel, E. Esarey, C.B. Schroeder, J.R. Cary, W.P. Leemans, Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100(21), 215004 (2008). doi:10.1103/PhysRevLett.100.215004

    Google Scholar 

  • P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction (Imperial College Press, London, 2005). ISBN 9781860941351

    Book  Google Scholar 

  • A.J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C.B. Schroeder, C.G.R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth, W.P. Leemans, Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys. 7(11), 862–866 (2011). doi:10.1038/nphys2071

    Article  Google Scholar 

  • S.M. Hooker, Developments in laser-driven plasma accelerators. Nat. Photonics 7(10), 775–782 (2013). doi:10.1038/nphoton.2013.234

    Article  ADS  Google Scholar 

  • Z. Huang, K.-J. Kim, A review of x-ray free-electron laser theory. Phys. Rev. ST Accel. Beams 10, 034801 (2007). http://link.aps.org/doi/10.1103/PhysRevSTAB.10.034801

    Article  ADS  Google Scholar 

  • Z. Huang, Y. Ding, C.B. Schroeder, Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 109(20), 204801 (2012). doi:10.1103/PhysRevLett.109.204801

    Google Scholar 

  • C. Joshi, T. Tajima, J.M. Dawson, H.A. Baldis, N.A. Ebrahim, Forward Raman instability and electron acceleration. Phys. Rev. Lett. 47(18), 1285–1288 (1981). doi:10.1103/ PhysRevLett.47.1285

    Article  ADS  Google Scholar 

  • H.T. Kim, K.H. Pae, H.J. Cha, I.J. Kim, T.J. Yu, J.H. Sung, S.K. Lee, T.M. Jeong, J. Lee, Enhancement of electron energy to the multi-Gev regime by a dual-stage laser-wakefield accelerator pumped by Petawatt laser pulses. Phys. Rev. Lett. 111(16), 165002 (2013). doi:10.1103/PhysRevLett.111.165002

    Google Scholar 

  • W.P. Leemans, B. Nagler, A.J. Gonsalves, C. TĂ³th, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2(10), 696–699 (2006). doi:10.1038/nphys418

    Article  Google Scholar 

  • W. Leemans, A. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. Schroeder, C. TĂ³th, J. Daniels, D. Mittelberger, S. Bulanov, J.-L. Vay, C. Geddes, E. Esarey, Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113(24), 245002 (2014). doi:10.1103/ PhysRevLett.113.245002

    Google Scholar 

  • R. Lehe, C. Thaury, E. Guillaume, A. Lifschitz, V. Malka, Laser-plasma lens for laser-wakefield accelerators. Phys. Rev. ST Accel. Beams 17, 121301 (2014). doi:10. 1103/PhysRevSTAB.17.121301

    Google Scholar 

  • L. Lilje, E. Kako, D. Kostin, A. Matheisen, W.D. Möller, D. Proch, D. Reschke, K. Saito, P. SchmĂ¼ser, S. Simrock, T. Suzuki, K. Twarowski, Achievement of 35 MV/m in the superconducting nine-cell cavities for TESLA. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detectors Assoc. Equip. 524(1–3), 1–12 (2004). doi:10.1016/j.nima.2004.01.045

    Article  ADS  Google Scholar 

  • A. Loulergue, M. Labat, C. Evain, C. Benabderrahmane, V. Malka, M.E., Couprie, Beam manipulation for compact laser wakefield accelerator based free-electron lasers. New J. Phys. 17, 023028 (2015). doi:10.1088/1367-2630/17/2/023028

    Google Scholar 

  • O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-IsmaĂ¯l, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V. Malka, J. Faure, Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nat. Phys. 7(3), 219–222 (2011). doi:10.1038/nphys1872

    Article  Google Scholar 

  • A.R. Maier, A. Meseck, S. Reiche, C.B. Schroeder, T. Seggebrock, F. GrĂ¼ner, Demonstration scheme for a laser-plasma-driven free-electron laser. Phys. Rev. X 2(3), 031019 (2012). doi:10.1103/PhysRevX.2.031019

    Google Scholar 

  • V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S.P.D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, A.E. Dangor, Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002). doi:10.1126/science.1076782

    Article  ADS  Google Scholar 

  • S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431(7008), 535–538 (2004). doi:10.1038/nature02939

    Article  ADS  Google Scholar 

  • B.W.J. McNeil, N.R. Thompson, X-ray free-electron lasers. Nat. Photon. 4, 814 (2010). http://dx.doi.org/10.1038/nphoton.2010.239

    Article  ADS  Google Scholar 

  • M. Migliorati, A. Bacci, C. Benedetti, E. Chiadroni, M. Ferrario, A. Mostacci, L. Palumbo, A.R. Rossi, L. Serafini, P. Antici, Intrinsic normalized emittance growth in laser-driven electron accelerators. Phys. Rev. ST. Accel. Beams 16, 011302 (2013). doi:10.1103/PhysRevSTAB.16.011302

    Article  ADS  Google Scholar 

  • A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, F.N. Walsh, Electron acceleration from the breaking of relativistic plasma waves. Nature 377(6550), 606–608 (1995). doi:10.1038/377606a0

    Article  ADS  Google Scholar 

  • S. Reiche, Genesis 1.3: a fully 3D time-dependent fel simulation code. Nucl. Instrum. Methods A 429, 243–248 (1999). http://dx.doi.org/10.1016/S0168-9002(99)00114-X

    Google Scholar 

  • C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, V. Malka, Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett. 102(16), 164801 (2009). doi:10.1103/ PhysRevLett.102.164801

    Google Scholar 

  • E. Saldin, E. Schneidmiller, M. Yurkov, The Physics of Free Electron Lasers (Springer, Berlin/New York, 2000)

    Book  Google Scholar 

  • E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Self-amplified spontaneous emission fel with energy-chirped electron beam and its application for generation of attosecond x-ray pulses. Phys. Rev. ST Accel. Beams 9, 050702 (2006). doi:10.1103/PhysRevSTAB.9. 050702

    Article  ADS  Google Scholar 

  • P. SchmĂ¼ser, M. Dohlus, J. Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers (Springer, Berlin, Heidelberg, 2009)

    Book  Google Scholar 

  • K. Schmid, A. Buck, C.M.S. Sears, J.M. Mikhailova, R. Tautz, D. Herrmann, M. Geissler, F. Krausz, L. Veisz, Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. Spec. Top. Accel. Beams 13(9), 091301 (2010). doi:10.1103/PhysRevSTAB.13.091301

    Google Scholar 

  • C.B. Schroeder, E. Esarey, W.M. Fawley, W. Leemans, A design for an XUV FEL driven by the laser-plasma accelerator at the LBNL LOASIS facility, 2006, https: //publications.lbl.gov/islandora/object/ir%3A126995/

  • C.B. Schroeder, E. Esarey, W.P. Leemans, J. van Tilborg, F.J. GrĂ¼ner, A.R. Maier, Free-Electron Lasers driven by laser-plasma accelerators using decompression or dispersion, in 35th International Free-Electron Laser Conference, New York, 25–30 Aug 2013. ISBN:978-3-95450-126-7

    Google Scholar 

  • P. Sprangle, E. Esarey, A. Ting, Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41(8), 4463–4469 (1990). doi:10.1103/PhysRevA.41.4463

    Article  ADS  Google Scholar 

  • T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43(4), 267–270 (1979). doi:10.1103/PhysRevLett.43.267

    Article  ADS  Google Scholar 

  • C. Thaury, E. Guillaume, A. Dopp, R. Lehe, A. Lifschitz, K. Ta Phuoc, J. Gautier, J.-P. Goddet, A. Tafzi, A. Flacco, F. Tissandier, S. Sebban, A. Rousse, V. Malka, Demonstration of relativistic electron beam focusing by a laser-plasma lens. Nat. Commun. 6, 6860 (2015). http://dx.doi.org/10.1038/ncomms7860

    Article  ADS  Google Scholar 

  • D. Umstadter, J.K. Kim, E. Dodd, Laser Injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76(12), 2073–2076 (1996). doi:10.1103/ PhysRevLett.76.2073

    Article  ADS  Google Scholar 

  • X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S.A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A.C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, M.C. Downer, Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. (2013). doi:10.1038/ncomms2988

    Google Scholar 

  • R. Weingartner, S. Raith, A. Popp, S. Chou, J. Wenz, K. Khrennikov, M. Heigoldt, A.R. Maier, N. Kajumba, M. Fuchs, B. Zeitler, F. Krausz, S. Karsch, and F. GrĂ¼ner. Ultralow emittance electron beams from a laser-wakefield accelerator. Phys. Rev. ST Accel. Beams 15, 111302 (2012). doi:10.1103/PhysRevSTAB.15.111302

    Article  ADS  Google Scholar 

  • K. Wille, The Physics of Particle Accelerators (Oxford University Press, Oxford, 2001)

    Google Scholar 

  • M. Xie, Design optimization for an x-ray free electron laser driven by SLAC linac. in Proceedings of the 1995 Particle Accelerator Conference, 1995. http://dx.doi.org/10.1109/PAC.1995.504603

  • M. Xie, Exact and variational solutions of 3D eigenmodes in high gain FELs. Nucl. Instrum. Methods A 445, 59–66 (2000). http://dx.doi.org/10.1016/S0168-9002(00) 00114-5

    Google Scholar 

Download references

Acknowledgements

We would like to thank I. Dornmair, S. Reiche, C. B. Schroeder and R. Lehe for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas R. Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Maier, A.R., Kirchen, M., GrĂ¼ner, F. (2016). Brilliant Light Sources driven by Laser-Plasma Accelerators. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_21-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_21-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Brilliant Light Sources driven by Laser-Plasma Accelerators
    Published:
    05 February 2016

    DOI: https://doi.org/10.1007/978-3-319-04507-8_21-2

  2. Original

    Brilliant Light Sources driven by Laser-Plasma Accelerators
    Published:
    17 July 2015

    DOI: https://doi.org/10.1007/978-3-319-04507-8_21-1