Skip to main content

Complex Variable Semianalytical Method for Sensitivity Evaluation in Nonlinear Path Dependent Problems: Applications to Periodic Truss Materials

  • Chapter
  • First Online:
Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 49))

Abstract

The evaluation of structural response derivatives with respect to design parameters, usually known as sensitivity analysis, is an issue of paramount importance in gradient-based optimization and reliability analyses in engineering. In the last 20 years, much research has been devoted to develop efficient strategies for the accurate evaluation of sensitivity information. A relatively new and promising procedure combines the semianalytical (SA) approach with the use of complex variables (CVSA). This method allows the use of diminutive perturbations, circumventing the weakness that the traditional SA approach shows when applied to shape design variables. In spite of the great potential of the CVSA, its formulation and application has been restricted to path independent problems. In this chapter we aim to extend the method to handle path dependent problems, emphasizing the treatment of internal variables, such as accumulated plastic strain and damage. In order to make the concept easy to understand, we use the method to evaluate the sensitivity of particular homogenized properties of a 2D periodic truss material (PTM). Optimization of PTMs has encountered great potential in tissue engineering, as well as in automotive and aeronautical applications. Generally PTMs are designed to operate in the linear geometrical and constitutive range. However, using sensitivity analysis we can obtain an insight about how these designed homogenized properties behave when geometrical and/or material nonlinearities are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The use of the isoparametric approach presented in this work does not lead to a direct extension to continuum elements, but preserves the traditional integral form of the internal force vector and tangent matrix. The matrices and vectors obtained have an analogous in continuum elements and thus, the expressions obtained give a deeper insight into the analogous modifications that should be performed in the continuum elements case.

  2. 2.

    Note that \(X_\ell \) with the “\(\ell \)” subscript stands for the initial value of \(x_\ell \), while X without the “\(\ell \)” subscript describes the global position in the XY system.

  3. 3.

    A virtual displacement field is defined as an infinitesimal displacement that satisfies the boundary conditions of the original configuration of a given body.

  4. 4.

    A given entity is said to be rotated if it is described in the corrotational system.

  5. 5.

    The micro-cracks and voids are small if compared to RVE dimension, but large when compared to the atomic level.

  6. 6.

    In favor of neatness, from this point on, the subscript \((.)_E\) is dropped because it is implicit that only the rotated engineering stress and strain tensors will be used throughout the text.

  7. 7.

    This work focuses on direct analytical sensitivity, since this option offers more advantages than the adjoint approach in path dependent problems even when the number of design variables is smaller than the number of constraints [43].

  8. 8.

    The material parameters adopted do not necessarily correspond to a real material, being chosen for purely academic purposes.

  9. 9.

    The dimensions given to the cell are irrelevant provided the relative density is kept unchanged. This is because the cell size must tend to zero when compared to the macroscopic scale [48].

  10. 10.

    In linear analysis the bulk modulus is constant, which does not occur when considering nonlinear behavior [49].

  11. 11.

    Note that the formulation of bar elements presented in Sect. 2 keeps the area of the cross-sections unchanged, which does not occur strictly. In fact, the effect of the change of the cross-sections along the deformation of the bars can be very important. An extension to account for this effect can be found in the work of Crisfield [50].

References

  1. Barthelemy, B., Haftka, R.T.: Accuracy analysis of the semi-analytical method for shape sensitivity calculation. Mech. Struct. Mach. 18, 407–432 (1990)

    Article  Google Scholar 

  2. Vidal, C.A., Haber, R.B.: Design sensitivity analysis for rate-independent elastoplasticity. Comput. Method Appl. Mech. 107, 393–431 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bletzinger, K.U., Firl, M., Daoud, F.: Approximation of derivatives in semi-analytical structural optimization. Comput. Struct. 86, 1404–1416 (2008)

    Article  Google Scholar 

  4. Habibi, A., Moharrami, H.: Nonlinear sensitivity analysis of reinforced concrete frames. Finite Elem. Anal. Des. 46, 571–584 (2010)

    Article  MathSciNet  Google Scholar 

  5. Jin, W., Dennis, B.H., Wang, B.P.: Improved sensitivity analysis using a complex variable semi-analytical method. Struct. Multidiscip. Optim. 41, 433–439 (2010)

    Article  Google Scholar 

  6. Barthelemy, B., Chon, C.T., Haftka, R.T.: Accuracy problems associated with semi-analytical derivatives of static response. Finite Elem. Anal. Des. 4, 249–265 (1988)

    Article  MATH  Google Scholar 

  7. Cheng, G., Gu, Y., Zhou, Y.: Accuracy of semi-analytic sensitivity analysis. Finite Elem. Anal. Des. 6, 113–128 (1989)

    Article  MATH  Google Scholar 

  8. Olhoff, N., Rasmussen, J., Lund, E.: A method of “exact" numerical differentiation for error elimination in finite element based semi-analytical shape sensitivity analysis. Mech. Struct. Mach. 21, 1–66 (1993)

    Article  MathSciNet  Google Scholar 

  9. Jin, W., Dennis, B.H., Wang, B.P.: Improved sensitivity and reability analysis of nonlinear Euler-Bernoulli beam using a complex variable semi-analytical method. In: ASME Proceedings (2009). doi:10.1115/DETC2009-87593

  10. Cheng, G., Olhoff, N.: New method of error analysis and detection in semi-analytical sensitivity analysis. Report No. 36, Institute of Mechanical Engineering, Aalborg University, Denmark, 34pp (1991)

    Google Scholar 

  11. Cheng, G., Gu, Y., Wang, X.: Improvement of semi-analytic sensitivity analysis and MCADS. In: Eschenauer, H.A., Mattheck, C., Olhoff, N. (eds.) Engineering Optimization in Design Processes, vol. 63, pp. 211–223. Springer, Berlin (1991)

    Google Scholar 

  12. Mlejnek, H.P.: Accuracy of semi-analytical sensitivities and its improvement by the "natural method". Struct. Optim. 4, 128–131 (1992)

    Article  Google Scholar 

  13. Parente, E., Vaz, L.E.: Improvement of semi-analytical design sensitivities of non-linear structures using equilibrium relations. Int. J. Numer. Methods Eng. 50, 2127–2142 (2001)

    Article  MATH  Google Scholar 

  14. Tsay, J.J., Cardoso, J.E.B., Arora, J.S.: Nonlinear structural design sensitivity analysis for path dependent problems. Part 1: General theory. Comput. Method Appl. Mech. 81, 183–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tsay, J.J., Cardoso, J.E.B., Arora, J.S.: Nonlinear structural design sensitivity analysis for path dependent problems. Part 2: Analytical examples. Comput. Method Appl. Mech. 81, 209–228 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, X.: Nonlinear finite element sensitivity analysis for large deformation elastoplastic and contact problems, Ph.D. thesis, University of Tokyo, Japan (1994)

    Google Scholar 

  17. Ohsaki, M., Arora, J.S.: Design sensitivity analysis of elastoplastic structures. Int. J. Numer. Methods Eng. 37, 737–762 (1994)

    Article  MATH  Google Scholar 

  18. Lee, T.H., Arora, J.S.: A computational method for design sensitivty analysis of elastoplastic structures. Comput. Methods Appl. Mech. Eng. 122, 27–50 (1995)

    Article  MATH  Google Scholar 

  19. Vidal, C.A., Lee, H.S., Haber, R.B.: The consistent tangent operator for design sensitivity analysis of history-dependent response. Comput. Syst. Eng. 2, 509–523 (1991)

    Article  Google Scholar 

  20. Kleiber, M., Hien, T.D., Postek, E.: Incremental finite element sensitivity analysis for non-linear mechanics applications. Int. J. Numer. Methods Eng. 37, 3291–3308 (1994)

    Article  MATH  Google Scholar 

  21. Kleiber, M., Kowalczyk, P.: Constitutive parameter sensitivity in elasto-plasticity. Comput. Mech. 137, 36–48 (1995)

    Article  MATH  Google Scholar 

  22. Kleiber, M., Kowalczyk, P.: Sensitivity analysis in plane stress elasto-plasticity and elasto-viscoplasticity. Comput. Methods Appl. Mech. Eng. 137, 395–409 (1996)

    Article  MATH  Google Scholar 

  23. Bugeda, G., Gil, L.: Shape sensitivity analysis for structural problems with non-linear material behaviour. Int. J. Numer. Methods Eng. 46, 1385–1404 (1999)

    Article  MATH  Google Scholar 

  24. Wisniewski, K., Kowalczyk, P., Turska, E.: On the computation of design derivatives for Huber-Mises plasticity with non-linear hardening. Int. J. Numer. Methods Eng. 57, 271–300 (2003)

    Article  MATH  Google Scholar 

  25. Conte, J.P., Barbato, M., Spacone, E.: Finite element response sensitivity analysis using force-based frame models. Int. J. Numer. Methods Eng. 59, 1781–1820 (2004)

    Article  MATH  Google Scholar 

  26. Chen, X., Nakamura, K., Mori, M., et al.: Sensitivity analysis for thermal stress and creep problems. JSME Int. J. 43, 252–258 (2000)

    Article  Google Scholar 

  27. Haveroth, G., Stahlschmidt, J., Muñoz-Rojas, P.A.: Application of the complex variable semi-analytical method for improved sensitivity evaluation in geometrically nonlinear truss problems. Lat. Am. J. Solids Struct. 12, 980–1005 (2015)

    Article  Google Scholar 

  28. Haveroth, G.: Complex semianalytical sensitivity analysis applied to trusses with geometric nonlinearity and coupled elastoplastic behavior, Master thesis (in portuguese), Santa Catarina State University, Brazil (2015)

    Google Scholar 

  29. Hughes, T.J.R., Hinton, E.: Finite Element Methods for Plate and Shell Structures: Formulation and Algorithms, vol. 2. Pineridge Press International (1986)

    Google Scholar 

  30. Stahlschimidt, J.: Sensitivity analysis for nonlinear problems via complex variables semi-analytical Method: Shape and material parameter application, Master thesis (in portuguese). Santa Catarina State University, Brazil (2013)

    Google Scholar 

  31. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

  32. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press (1990)

    Google Scholar 

  33. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  34. Esmaeili, M., Öchsner, A.: A one-dimensional implementation of a coupled elasto-plastic model for ductile damage. Mat. -wiss. u. Werkstofftech 42, 444–451 (2011)

    Article  Google Scholar 

  35. Tanaka, M., Fujikawa, M., Balzani, D., Schröder, J.: Robust numerical calculation of tangent module at finite strains based on complex-step derivative approximation and its application to localization analysis. Comput. Methods Appl. Mech. Eng. 269, 454–470 (2014)

    Article  MATH  Google Scholar 

  36. Tortorelli, D.A., Michaleris, P.: Design sensitivity analysis: overview and review. Inverse Probl. Eng. 1, 71–105 (1994)

    Article  Google Scholar 

  37. Muñoz-Rojas, P.A., Fonseca, J.S.O., Creus, G.J.: A modified finite difference sensitivity analysis method allowing remeshing in large strain path-dependent problems. Int. J. Numer. Methods Eng. 61, 1049–1071 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lyness, J.N., Moler, C.B.: Numerical differentiation of analytic functions. SIAM J. Numer. Anal. 4, 202–210 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lyness, J.N.: Numerical algorithms based on the theory of complex variable. In: ACM Proceedings (1967). doi:10.1145/800196.805983

  40. Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM J. Numer. Anal. 1, 110–112 (1998)

    MathSciNet  MATH  Google Scholar 

  41. Martins, J., Sturdza, P., Alonso, J.J.: The complex-step derivative approximation. ACM Trans. Math. Softw. 29, 245–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Montoya, A., Fielder, R., Gomez-Farias, A., Millwater, H.: Finite-element sensitivity for plasticity using complex variable methods. J. Eng. Mech. 141, 04014118 (2015)

    Article  Google Scholar 

  43. Kleiber, M., Hien, T.D., Antúnez, H., et al.: Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations. Wiley, New York (1997)

    Google Scholar 

  44. Conte, J., Vijalapura, P., Meghella, M.: Consistent finite-element response sensitivity analysis. J. Eng. Mech. 129, 1380–1393 (2003)

    Article  Google Scholar 

  45. Guth, D.C.: Optimization of lattice cells materials aiming at thermomechanical applications including isotropy constraints, Master thesis (in portuguese), Santa Catarina State University, Brazil (2012)

    Google Scholar 

  46. Guth, D.C., Luersen, M.A., Muñoz-Rojas, P.A.: Optimization of three-dimensional truss-like periodic materials considering isotropy constraints. Multidiscip. Optim. Struct. (2015). doi:10.1007/s00158-015-1282-4

    Google Scholar 

  47. Guth, D.C., Luersen, M.A., Muñoz-Rojas, P.A.: Optimization of periodic truss materials including constitutive symmetry constraints. Mat. wiss. u.Werkstofftech. 43, 447–456 (2012)

    Google Scholar 

  48. Hassani, B., Hinton, E.: A review of homogenization and topology optimization I-homogenization theory for media with periodic structure. Comput. Struct. 69, 707–717 (1998)

    Article  MATH  Google Scholar 

  49. Penn, R.W.: Volume changes accompanying the extension of rubber. Trans. Soc. Rheol. 14, 509–517 (1970)

    Article  Google Scholar 

  50. Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures. Wiley, New York (1991)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to CNPq and CAPES (Brazilian research supporting agencies), and to UDESC for the concession of Master’s scholarships associated to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Muñoz-Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haveroth, G.A., Muñoz-Rojas, P.A. (2016). Complex Variable Semianalytical Method for Sensitivity Evaluation in Nonlinear Path Dependent Problems: Applications to Periodic Truss Materials. In: Muñoz-Rojas, P. (eds) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. Advanced Structured Materials, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-04265-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04265-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04264-0

  • Online ISBN: 978-3-319-04265-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics