Skip to main content

Neural Network Based Gesture Recognition for Elderly Health Care Using Kinect Sensor

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8298))

Included in the following conference series:

Abstract

A simple method to detect gestures revealing muscle and joint pain is described in this paper. Kinect Sensor is used for data acquisition. This sensor only processes twenty joint coordinates in three dimensional space for feature extraction. The recognition part is achieved using a neural network optimized by Levenberg-Marquardt learning rule. A high recognition rate of 91.9% is achieved using the proposed method. This is also better than several algorithms previously used for elder person gesture recognition works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halder, A., Rakshit, P., Chakraborty, A., Konar, A., Janarthanan, R.: Emotion recognition from the lip-contour of a subject using artificial bee colony optimization algorithm. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011, Part I. LNCS, vol. 7076, pp. 610–617. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Chakraborty, A., Konar, A.: Emotional Intelligence: A Cybernetic Approach, vol. 1234. Springer (2009)

    Google Scholar 

  3. Saha, S., Ghosh, S., Konar, A., Nagar, A.K.: Gesture Recognition from Indian Classical Dance Using Kinect Sensor. In: 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), pp. 3–8 (2013)

    Google Scholar 

  4. Zhou, Z., Dai, W., Eggert, J., Giger, J.T., Keller, J., Rantz, M., He, Z.: A real-time system for in-home activity monitoring of elders. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 6115–6118 (2009)

    Google Scholar 

  5. Diraco, G., Leone, A., Siciliano, P.: An active vision system for fall detection and posture recognition in elderly healthcare. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1536–1541 (2010)

    Google Scholar 

  6. Liu, Y., Zhang, Z., Li, A., Wang, M.: View independent human posture identification using Kinect. In: 2012 5th International Conference on Biomedical Engineering and Informatics (BMEI), pp. 1590–1593 (2012)

    Google Scholar 

  7. Leyvand, T., Meekhof, C., Wei, Y.-C., Sun, J., Guo, B.: Kinect identity: Technology and experience. Computer 44(4), 94–96 (2011)

    Article  Google Scholar 

  8. Tanabe, R., Cao, M., Murao, T., Hashimoto, H.: Vision based object recognition of mobile robot with Kinect 3D sensor in indoor environment. In: 2012 Proceedings of SICE Annual Conference (SICE), pp. 2203–2206 (2012)

    Google Scholar 

  9. Le, T.-L., Nguyen, M.-Q., Nguyen, T.-T.-M.: Human posture recognition using human skeleton provided by Kinect. In: 2013 International Conference on Computing, Management and Telecommunications (ComManTel), pp. 340–345 (2013)

    Google Scholar 

  10. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)

    Article  Google Scholar 

  11. Dutta, T.: Evaluation of the KinectTM sensor for 3-D kinematic measurement in the workplace. Applied Ergonomics 43(4), 645–649 (2012)

    Article  Google Scholar 

  12. Konar, A.: Artificial intelligence and soft computing: behavioral and cognitive modeling of the human brain, vol. 1. CRC Press (1999)

    Google Scholar 

  13. Konar, A.: Computational intelligence: principles, techniques and applications. Springer (2005)

    Google Scholar 

  14. Kermani, B.G., Schiffman, S.S., Nagle, H.T.: Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sensors and Actuators B: Chemical 110(1), 13–22 (2005)

    Article  Google Scholar 

  15. Lera, G., Pinzolas, M.: Neighborhood based Levenberg-Marquardt algorithm for neural network training. IEEE Transactions on Neural Networks 13(5), 1200–1203 (2002)

    Article  Google Scholar 

  16. Solaro, J.: The Kinect Digital Out-of-Box Experience Computer, pp. 97–99 (2011)

    Google Scholar 

  17. Zhuang, H., Zhao, B., Ahmad, Z., Chen, S., Low, K.S.: 3D depth camera based human posture detection and recognition Using PCNN circuits and learning-based hierarchical classifier. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–5 (2012)

    Google Scholar 

  18. Li, S., Kwok, J.T., Wang, Y.: Multifocus image fusion using artificial neural networks. Pattern Recognition Letters 23(8), 985–997 (2002)

    Article  MATH  Google Scholar 

  19. Brown, D.E., Corruble, V., Pittard, C.L.: A comparison of decision tree classifiers with backpropagation neural networks for multimodal classification problems. Pattern Recognition 26(6), 953–961 (1993)

    Article  Google Scholar 

  20. Sevakula, R.K., Verma, N.K.: Support vector machine for large databases as classifier. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Nanda, P.K. (eds.) SEMCCO 2012. LNCS, vol. 7677, pp. 303–313. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Das, S., Halder, A., Bhowmik, P., Chakraborty, A., Konar, A., Nagar, A.K.: Voice and facial expression based classification of emotion using linear support vector machine. In: 2009 Second International Conference on Developments in eSystems Engineering (DESE), pp. 377–384 (2009)

    Google Scholar 

  22. Cortes, C., Vapnik, V.: Support vector machine. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  23. Zhan, Y., Shen, D.: Design efficient support vector machine for fast classification. Pattern Recognition 38(1), 157–161 (2005)

    Article  Google Scholar 

  24. Wu, Y., Ianakiev, K., Govindaraju, V.: Improved<i> k</i>-nearest neighbor classification. Pattern Recognition 35(10), 2311–2318 (2002)

    Article  MATH  Google Scholar 

  25. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  26. Wang, J., Neskovic, P., Cooper, L.N.: Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognition Letters 28(2), 207–213 (2007)

    Article  Google Scholar 

  27. Vidal Ruiz, E.: An algorithm for finding nearest neighbours in (approximately) constant average time. Pattern Recognition Letters 4(3), 145–157 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Saha, S., Pal, M., Konar, A., Janarthanan, R. (2013). Neural Network Based Gesture Recognition for Elderly Health Care Using Kinect Sensor. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8298. Springer, Cham. https://doi.org/10.1007/978-3-319-03756-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03756-1_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03755-4

  • Online ISBN: 978-3-319-03756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics