Skip to main content

Rate of Convergence in Simultaneous Approximation

  • Chapter
  • First Online:

Abstract

In the theory of approximation, the study of the rate of convergence in simultaneous approximation is also an interesting area of research. Several researchers have worked in this direction; some of them have obtained the rate of convergence for bounded/bounded variation functions in simultaneous approximation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. U. Abel, The complete asymptotic expansion for the Meyer–König and Zeller operators. J. Math. Anal. Appl. 208, 109–119 (1997)

    Google Scholar 

  2. U. Abel, Asymptotic approximation with Kantorovich polynomials. Approx. Theory Appl. 14(3), 106–116 (1998)

    MATH  MathSciNet  Google Scholar 

  3. U. Abel, Asymptotic approximation by Bernstein–Durrrmeyer operators and their derivatives. Approx. Theory Appl. 16(2), 1–12 (2000)

    MATH  MathSciNet  Google Scholar 

  4. U. Abel, V. Gupta, An estimate of the rate of convergence of a Bézier variant of the Baskakov–Kantorovich operators for bounded variation functions. Demonstr. Math. 36(1), 123–136 (2003)

    MATH  MathSciNet  Google Scholar 

  5. U. Abel, V. Gupta, Rate of convergence of Stancu Beta operators for functions of bounded variation. Rev. Anal. Numér. Théor. Approx. 33(1), 3–9 (2004)

    MATH  MathSciNet  Google Scholar 

  6. U. Abel, M. Ivan, On a generalization of an approximation operator defined by A. Lupaş. Gen. Math. 15(1), 21–34 (2007)

    MATH  MathSciNet  Google Scholar 

  7. U. Abel, V. Gupta, M. Ivan, On the rate of convergence of a Durrmeyer variant of the Meyer–König and Zeller operators. Arch. Inequal. Appl. 1, 1–10 (2003)

    MATH  MathSciNet  Google Scholar 

  8. U. Abel, V. Gupta, M. Ivan, The complete asymptotic expansion for Baskakov–Szász–Durrmeyer operators. Ann. Tiberiu Popoviciu Semin. Funct. Equat. Approx. Convex. 1, 3–15 (2003)

    MathSciNet  Google Scholar 

  9. U. Abel, V. Gupta, M. Ivan, The complete asymptotic expansion for a general Durrmeyer variant of the Meyer–König and Zeller operators. Math. Comput. Model. 40, 807–875 (2004)

    MathSciNet  Google Scholar 

  10. U. Abel, V. Gupta, M. Ivan, Asymptotic approximation of functions and their derivatives by generalized Baskakov–Szász–Durrmeyer operators. Anal. Theory Appl. 21(1), 15–26 (2005)

    MATH  MathSciNet  Google Scholar 

  11. U. Abel, V. Gupta, R.N. Mohapatra, Local approximation by beta operators. Nonlinear Anal. Theory Methods Appl. Ser. A: Theory Methods 62(1), 41–52 (2005)

    MATH  MathSciNet  Google Scholar 

  12. U. Abel, M. Ivan, X.M. Zeng, Asymptotic expansion for Szász–Mirakyan operators. AIP Conf. Proc. 936, 779–782 (2007)

    Google Scholar 

  13. U. Abel, V. Gupta, R.N. Mohapatra, Local approximation by a variant of Bernstein–Durrmeyer operators. Nonlinear Anal. Theory Methods Appl. Ser. A: Theory Methods 68(11), 3372–3381 (2008)

    MATH  MathSciNet  Google Scholar 

  14. T. Acar, A. Aral, V. Gupta, On approximation properties of a new type Bernstein–Durrmeyer operators. Math. Slovaca (to appear)

    Google Scholar 

  15. R.P. Agarwal, V. Gupta, On q-analogue of a complex summation-integral type operators in compact disks. J. Inequal. Appl. 2012, 1–13 (2012). Article 111

    Google Scholar 

  16. O. Agratini, On a sequence of linear and positive operators. Facta Univ. Ser. Math. Inform. 14, 41–48 (1999)

    MATH  MathSciNet  Google Scholar 

  17. O. Agratini, An approximation process of Kantorovich type. Math. Notes Miskolc 2(1), 3–10 (2001)

    MATH  MathSciNet  Google Scholar 

  18. O. Agratini, B.D. Vecchia, Mastroianni operators revisited. Facta Univ. Ser. Math. Inform. 19, 53–63 (2004)

    MATH  Google Scholar 

  19. P.N. Agrawal, Simultaneous approximation by Micchelli combination of Bernstein polynomials. Demonstr. Math. XXV(3), 513–523 (1992)

    Google Scholar 

  20. P.N. Agrawal, V. Gupta, L p -approximation by iterative combination of Phillips operators. Publ. Inst. Math. Nouv. Sér. 52, 101–109 (1992)

    MathSciNet  Google Scholar 

  21. P.N. Agrawal, V. Gupta, On convergence of derivatives of Phillips operators. Demonstr. Math. 27, 501–510 (1994)

    MATH  MathSciNet  Google Scholar 

  22. P.N. Agrawal, H.S. Kasana, On the iterative combinations of Bernstein polynomials. Demonstr. Math. XVII(3), 777–783 (1984)

    Google Scholar 

  23. P.N. Agrawal, H.S. Kasana, On simultaneous approximation by modified Bernstein polynomials. Boll. Unione Mat. Ital. VI. Ser. A 6(3-A), 267–273 (1984)

    Google Scholar 

  24. P.N. Agrawal, A.J. Mohammad, On L p approximation by a linear combination of a new sequence of linear positive operators. Turk. J. Math. 27, 389–405 (2003)

    MATH  MathSciNet  Google Scholar 

  25. P.N. Agrawal, G. Prasad, Degree of approximation to integrable functions by Kantoorovic polynomials. Boll. Unione Mat. Ital. VI. Ser. A 6(4-A), 323–326 (1985)

    Google Scholar 

  26. P.N. Agrawal, K.J. Thamar, Approximation of unbounded function by a new sequence of linear positive operators. J. Math. Anal. Appl. 225, 660–672 (1998)

    MATH  MathSciNet  Google Scholar 

  27. P.N. Agrawal, V. Gupta, A. Sahai, On convergence of derivatives of linear combinations of modified Lupas operators. Publ. Inst. Math. Nouv. Sér. 45(59), 147–154 (1989)

    MathSciNet  Google Scholar 

  28. G.A. Anastassiou, S.G. Gal, Approximation by complex Bernstein–Durrmeyer polynomials in compact disks. Mediterr. J. Math. 7(4), 471–482 (2010)

    MATH  MathSciNet  Google Scholar 

  29. G. Aniol, P. Pych-Taberska, Appproximation properties of the Gamma and Beta operators. Fasc. Math. 22, 43–51 (1991)

    MATH  MathSciNet  Google Scholar 

  30. G. Aniol, P. Pych-Taberska, On the rate of pointwise convergence of the Durrmeyer type operators. Approx. Theory Appl. 11(2), 94–102 (1995)

    MATH  MathSciNet  Google Scholar 

  31. A. Aral, V. Gupta, R.P. Agrawal, Applications of q Calculus in Operator Theory, xii (Springer, New York, 2013), p. 262. ISBN:978-1-4614-6945-2/hbk; 978-1-4614-6946-9/ebook

    Google Scholar 

  32. G.D. Bai, Y.H. Hua, S.Y. Shaw, Rate of approximation for functions with derivatives of bounded variation. Anal. Math. 28(3), 171–196 (2002)

    MATH  MathSciNet  Google Scholar 

  33. K. Balazs, J. Szabodos, Approximation by Bernstein type rational functions II. Acta Math. Hung. 40(3–4), 331–337 (1982)

    MATH  Google Scholar 

  34. V.A. Baskakov, Primer posledovatel’nosti lineinyh polozitel’nyh operatorov v prostranstve neprerivnyh funkeil (An example of a sequence of linear positive operators in the space of continuous functons). Dokl. Akad. Nauk SSSR 113, 249–251 (1957)

    MATH  MathSciNet  Google Scholar 

  35. G. Bastien, M. Rogalski, Convexité, complete monotonie et inégalités sur les fonctions zéta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques. Can. J. Math. 54, 919–944 (2002)

    MathSciNet  Google Scholar 

  36. M. Becker, Global approximation theoorems for Szász–Mirakjan and Baskakov operators in polynomial weight spaces. Indiana Univ. Math. J. 27, 127–142 (1978)

    MATH  MathSciNet  Google Scholar 

  37. S. Bernstein, Demonstration du theoreme de Weierstrass, fonde sur le probabilities. Commun. Soc. Math. Kharkow 13, 1–2 (1912–13)

    Google Scholar 

  38. S. Bernstein, Complement a l’ article de E. Voronovskaya “Determination de la forme asymptotique de l’approximation des fonctions par les polynomes de M. Bernstein”. C. R. Acad. Sci. URSS 1932, 86–92 (1932)

    Google Scholar 

  39. P. Bézier, Numerical Control-Mathematics and Applications (Wiley, London, 1972)

    MATH  Google Scholar 

  40. L. Bingzheng, Direct and converse results for linear combinations of Baskakov–Durrmeyer operators. Approx. Theory Appl. 9(3), 61–72 (1993)

    MATH  MathSciNet  Google Scholar 

  41. G. Bleimann, P.L. Butzer, L. Hann, A Bernstein-type operator approximating continuous functions on the semi-axis. Indag. Math. 42, 255–262 (1980)

    MATH  Google Scholar 

  42. H. Bohman, On approximation of continuous and analytic functions. Ark. Math. 2, 43–57 (1952)

    MATH  MathSciNet  Google Scholar 

  43. R. Bojanic, An estimate of the rate of convergence for Fourier series of functions of bounded variation. Publ. Inst. Math. Nouv. Sér. 26(40), 57–60 (1979)

    MathSciNet  Google Scholar 

  44. R. Bojanic, F. Cheng, Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejér polynomials [Second Edmonton Conference on Approximation Theory (1982)]. Can. Math. Soc. Conf. Proc. 3, 5–17 (1983)

    MathSciNet  Google Scholar 

  45. R. Bojanic, F. Cheng, Rate of convergence of Bernstein polynomials of functions with derivative of bounded variation. J. Math. Anal. Appl. 141, 136–151 (1989)

    MATH  MathSciNet  Google Scholar 

  46. R. Bojanic, O. Shisha, Degree of L 1 approximaton to integrable functions by modified Bernstein polynomials. J. Approx. Theory 13, 66–72 (1975)

    MATH  MathSciNet  Google Scholar 

  47. R. Bojanic, M. Vuilleumier, On the rate of convergence of Fourier–Legendre series of functions of bounded variation. J. Approx. Theory 31, 67–79 (1981)

    MATH  MathSciNet  Google Scholar 

  48. P.L. Butzer, Linear combinations of Bernstein polynomials. Can. J. Math. 5, 559–567 (1953)

    MATH  MathSciNet  Google Scholar 

  49. P.L. Butzer, R.J. Nessel, Fourier Analysis and Approximation, vol. 1 (Academic, New York, 1971)

    MATH  Google Scholar 

  50. I. Büyükyazici, C. Atakut, On Stancu type generalization of q-Baskakov operators. Math. Comput. Model. 52(5–6), 752–759 (2010)

    MATH  Google Scholar 

  51. G. Chang, Generalized Bernstein–Bézier polynomials. J. Comput. Math. 4(1), 322–327 (1983)

    Google Scholar 

  52. Z.A. Chanturiya, Modulus of variation of function and its application in the theory of Fourier series. Dokl. Akad. Nauk SSSR 214, 63–66 (1974) (in Russian)

    MathSciNet  Google Scholar 

  53. W. Chen, On the integral type Meyer–König and Zeller operators. Approx. Theory Appl. 2, 7–18 (1986)

    MATH  MathSciNet  Google Scholar 

  54. F. Cheng, On the rate of convergece of Bernstein polynomials of functions of bounded variation. J. Approx. Theory 39, 259–274 (1983)

    MATH  MathSciNet  Google Scholar 

  55. F. Cheng, On the rate of convergece of the Szász–Mirakyan operator for functions of bounded variation. J. Approx. Theory 40, 226–241 (1984)

    MATH  MathSciNet  Google Scholar 

  56. Y.S. Chow, H. Teicher, Probability Theory (Springer, Heidelberg, 1978)

    MATH  Google Scholar 

  57. N. Deo, Faster rate of convergence on Srivastava Gupta operators. Appl. Math. Comput. 218, 10486–10491 (2012)

    MATH  MathSciNet  Google Scholar 

  58. M.-M. Derriennic, Sur l’approximation de functions integrable sur [0, 1] par des polynomes de Bernstein modifies. J. Approx. Theory 31, 323–343 (1981)

    Google Scholar 

  59. R. A. DeVore, The Approximation of Continuous Functions by Positive Linear Operators. Lecture Notes in Mathematics, vol. 293 (Springer, New York, 1972)

    Google Scholar 

  60. R.A. DeVore, G.G. Lorentz, Constructive Approximation (Springer, Berlin, 1993)

    MATH  Google Scholar 

  61. Z. Ditzian, Direct estimate for Bernstein polynomials. J. Approx. Theory 79, 165–166 (1994)

    MATH  MathSciNet  Google Scholar 

  62. Z. Ditzian, V. Totik, Moduli of Smoothness (Springer, Berlin, 1987)

    MATH  Google Scholar 

  63. D.K. Dubey, V.K. Jain, Rate of approximation for integrated Szász–Mirakyan operators. Demonstr. Math. XLI(4), 879–886 (2008)

    Google Scholar 

  64. O. Duman, M.A. Ozarslan, H. Aktuglu, Better error estimation for Szász–Mirakjan–Beta operators. J. Comput. Anal. Appl. 10(1), 53–59 (2008)

    MATH  MathSciNet  Google Scholar 

  65. J.L. Durrmeyer, Une formule d’ inversion de la Transformee de Laplace: Applications a la Theorie des Moments. These de 3e Cycle, Faculte des Sciences de l’ Universite de Paris (1967)

    Google Scholar 

  66. J. Favard, Sur les multiplicateurs d’interpolation. J. Math. Pures Appl. Ser. 9(23), 219–247 (1944)

    MathSciNet  Google Scholar 

  67. L. Fejér, Über interpolation, Nachrichten der Gesellschaft für Wissenschaften su Göttingen. Math. Phys. Kl. 66–91 (1916)

    Google Scholar 

  68. W. Feller, An Introduction to Probability Theory and Its Applications II (Wiley, New York, 1966)

    MATH  Google Scholar 

  69. M. Felten, direct and inverse estimates for Bernstein polynomials. Constr. Approx. 14, 459–468 (1998)

    Google Scholar 

  70. G. Feng, Direct and inverse approximation theorems for Baskakov operators with the Jacobi-type weight. Abstr. Appl. Anal. 2011, 13 (2011). Article ID 101852

    Google Scholar 

  71. Z. Finta, On converse approximation theorems. J. Math. Anal. Appl. 312(1), 159–180 (2005)

    MATH  MathSciNet  Google Scholar 

  72. Z. Finta, V. Gupta, Direct and inverse estimates for Phillips type operators. J. Math. Anal. Appl. 303(2), 627–642 (2005)

    MATH  MathSciNet  Google Scholar 

  73. Z. Finta, N.K. Govil, V. Gupta, Some results on modified Szász–Mirakyan operators. J. Math. Anal. Appl. 327(2), 1284–1296 (2007)

    MATH  MathSciNet  Google Scholar 

  74. M.S. Floater, On convergence of derivatives of Bernstein approximation. J. Approx. Theory 134, 130–135 (2005)

    MATH  MathSciNet  Google Scholar 

  75. A.D. Gadzjiv, Theorems of the type of P.P. Korovkin type theorems. Math. Zametki 20(5), 781–786 (1976); English Translation, Math. Notes 20(5–6), 996–998 (1976)

    Google Scholar 

  76. S.G. Gal, On the lower pointwise estimate by Bernstein polynomials. Math. Anal. Approx. Theory 103–108 (2002). ISBN:973-85647-4-3

    Google Scholar 

  77. S.G. Gal, Approximation by Complex Bernstein and Convolution-Type Operators (World Scientific Publishing Co., Singapore, 2009)

    MATH  Google Scholar 

  78. S.G. Gal, Approximation by complex genuine Durrmeyer type polynomials in compact disks. Appl. Math. Comput. 217, 1913–1920 (2010)

    MATH  MathSciNet  Google Scholar 

  79. S.G. Gal, V. Gupta, Quantitative estimates for a new complex Durrmeyer operator in compact disks. Appl. Math. Comput. 218(6), 2944–2951 (2011)

    MATH  MathSciNet  Google Scholar 

  80. S.G. Gal, V. Gupta, Approximation by complex Beta operators of first kind in strips of compact disks. Mediterr. J. Math. 10(1), 31–39 (2013)

    MATH  MathSciNet  Google Scholar 

  81. S.G. Gal, V. Gupta, Approximation by complex Stancu Beta operators of second kind in semidisks. Rev. Anal. Numér. Théor. Approx. (to appear)

    Google Scholar 

  82. S. Gal, V. Gupta, D.K. Verma, P.N. Agrawal, Approximation by complex Baskakov–Stancu operators in compact disks. Rend. Circ. Mat. Palermo 61, 153–165 (2012)

    MATH  MathSciNet  Google Scholar 

  83. I. Gavrea, T. Trif, The rate of convergence by cerain new Meyer–König and Zeller operators of finite type. Rend. Circ. Mat. Palermo (2) Suppl. 76, 375–394 (2005)

    Google Scholar 

  84. S. Goldberg, V. Meir, Minimum moduli of ordinary differential operators. Proc. London Math. Soc. 23(3), 1–15 (1971)

    MATH  MathSciNet  Google Scholar 

  85. H. Gonska, P. Pitul, Remarks on an article of J.P. King. Commentat. Math. Univ. Carol. 46(4), 654–652 (2005)

    Google Scholar 

  86. T.N.T. Goodman, A. Sharma, A Bernstein-type operator on the simplex. Math. Balk. New Ser. 5(2), 129–145 (1991)

    MATH  MathSciNet  Google Scholar 

  87. N.K. Govil, V. Gupta, Some approximation properties of integrated Bernstein operators. In Advances in Mathematics Research, Chapter 8, vol. 11, ed. by R. Baswell (Nova Science Publishers, Inc., New York, 2009)

    Google Scholar 

  88. S. Guo, On the rate of convergence of the Durrmeyer operators for functions of bounded variation. J. Approx. Theory 51, 183–192 (1987)

    MATH  MathSciNet  Google Scholar 

  89. S. Guo, Degree of approximation to functions of bounded variation by certain operators. Approx. Theory Appl. 4(2), 9–18 (1988)

    MATH  MathSciNet  Google Scholar 

  90. S. Guo, On the rate of convergence of the integrated Meyer–König and Zeller operators for functions of bounded variation. J. Approx. Theory 56, 245–255 (1989)

    MATH  MathSciNet  Google Scholar 

  91. S. Guo, M.K. Khan, On the rate of convergence of some operators on functions of bounded variation. J. Approx Theory 58, 90–101 (1989)

    MATH  MathSciNet  Google Scholar 

  92. V. Gupta, A note on modified Baskakov type operators. Approx. Theory Appl. 10(3), 74–78 (1994)

    MATH  MathSciNet  Google Scholar 

  93. V. Gupta, A sharp estimate on the degree of approximation to functions of bounded variation by certain operators. Approx. Theory Appl. 11(3), 106–107 (1995)

    MATH  MathSciNet  Google Scholar 

  94. V. Gupta, Rate of convergence by Baskakov–Beta operators. Mathematica 37(60)(1–2), 109–117 (1995)

    Google Scholar 

  95. V. Gupta, Simultaneous approximation by Szász–Durrmeyer operators. Math. Stud. 64(1–4), 27–36 (1995)

    MATH  Google Scholar 

  96. V. Gupta, A note on the rate of convergence of Durrmeyer type operators for function of bounded variation. Soochow J. Math. 23, 115–118 (1997)

    MATH  MathSciNet  Google Scholar 

  97. V. Gupta, A note on Meyer–König and Zeller operators for functions of bounded variation. Approx. Theory Appl. 18(3), 99–102 (2002)

    MATH  MathSciNet  Google Scholar 

  98. V. Gupta, Rate of convergence on Baskakov–Beta–Bézier operators for bounded variation functions. Int. J. Math. Math. Sci. 32(8), 471–479 (2002)

    MATH  MathSciNet  Google Scholar 

  99. V. Gupta, Rate of approximation by new sequence of linear positive operators. Comput. Math. Appl. 45(12), 1895–1904 (2003)

    MATH  MathSciNet  Google Scholar 

  100. V. Gupta, Degree of approximation to function of bounded variation by Bézier variant of MKZ operators. J. Math. Anal. Appl. 289, 292–300 (2004)

    MATH  MathSciNet  Google Scholar 

  101. V. Gupta, An estimate on the convergence of Baskakov–Bézier operators. J. Math. Anal. Appl. 312, 280–288 (2005)

    MATH  MathSciNet  Google Scholar 

  102. V. Gupta, On bounded variation functions by general MKZD operators. Acta Math. Sinica Eng. Ser. 23(8), 1457–1462 (2007)

    MATH  Google Scholar 

  103. V. Gupta, Approximation for modified Baskakov Durrmeyer operators. Rocky Mt. J. Math. 29(3), 825–841 (2009)

    Google Scholar 

  104. V. Gupta, A note on modified Phillips operators. Southeast Asian Bull. Math. 34, 847–851 (2010)

    MATH  MathSciNet  Google Scholar 

  105. V. Gupta, A new class of Durrmeyer operators. Adv. Stud. Contemp. Math. 23(2), 219–224 (2013)

    MathSciNet  Google Scholar 

  106. V. Gupta, U. Abel, Rate of convergence of bounded variation function by a Bézier Durrmeyer variant of Baskakov operators. Int. J. Math. Math. Sci. 2004(9), 459–468 (2004)

    MATH  MathSciNet  Google Scholar 

  107. V. Gupta, U. Abel, The rate of convergence by a new type of Meyer–König and Zeller operators. Fasc. Math. 34, 15–23 (2004)

    MATH  MathSciNet  Google Scholar 

  108. V. Gupta, P.N. Agrawal, An estimate of the rate of convergence for modified Szász–Mirakyan operators of functions of bounded variation. Publ. Inst. Math. Nouv. Sér. (N.S.) 49(63), 97–103 (1991)

    Google Scholar 

  109. V. Gupta, K.V. Arya, On the rate of pointwise convergence of modified Baskakov type operators for functions of bounded variation. Kyungpook Math. J. 38(2), 283–291 (1998)

    MATH  MathSciNet  Google Scholar 

  110. V. Gupta, N. Deo, A note on improved estimates for integrated Szász–Mirakyan operators. Math. Slovaca 61(5), 799–806 (2011)

    MATH  MathSciNet  Google Scholar 

  111. V. Gupta, O. Duman, Bernstein Durrmeyer type operators preserving linear functions. Math. Vesniki 62(4), 259–264 (2010)

    MATH  MathSciNet  Google Scholar 

  112. V. Gupta, P. Gupta, Direct theorem in simultaneous approximation for Szász–Mirakyan Baskakov type operators. Kyungpook Math. J. 41(2), 243–249 (2001)

    MATH  MathSciNet  Google Scholar 

  113. V. Gupta, N. Ispir, On simultaneous approximation for some modified Bernstein type operators. Int. J. Math. Math. Sci. 2004(71), 3951–3958 (2004)

    MATH  MathSciNet  Google Scholar 

  114. V. Gupta, N. Kumar, A note on integral modification of the Meyer–König and Zeller operators. Int. J. Math. Math. Sci. 2003(31), 2003–2009 (2003)

    MATH  MathSciNet  Google Scholar 

  115. V. Gupta, A.J. Lopez-Moreno, Jose-Manuel Latorre-Palacios, On simultaneous approximation of the Bernstein Durrmeyer operators. Appl. Math. Comput. 213(1), 112–120 (2009)

    MATH  MathSciNet  Google Scholar 

  116. V. Gupta, A. Lupas, Direct results for mixed Beta–Szász type operators. Gen. Math. 13(2), 83–94 (2005)

    MATH  MathSciNet  Google Scholar 

  117. V. Gupta, P. Maheshwari, On Baskakov–Szász type operators. Kyungpook Math. J. 43(3), 315–325 (2003)

    MATH  MathSciNet  Google Scholar 

  118. V. Gupta, P. Maheshwari, Bézier variant of a new Durrmeyer type operators. Rivista di Matematica della Università di Parma 7(2), 9–21 (2003)

    MathSciNet  Google Scholar 

  119. V. Gupta, M.A. Noor, Convergence of derivatives for certain mixed Szász Beta operators. J. Math. Anal. Appl. 321(1), 1–9 (2006)

    Google Scholar 

  120. V. Gupta, R.P. Pant, Rate of convergence for the modified Szász–Mirakyan operators on functions of bounded variation. J. Math. Anal. Appl. 233, 476–483 (1999)

    MATH  MathSciNet  Google Scholar 

  121. V. Gupta, P. Pych-Taberska, On the rate of pointwise convergence of modified Baskakov type operators. Funct. Approx. 24, 59–67 (1996)

    MATH  MathSciNet  Google Scholar 

  122. V. Gupta, C. Radu, Statistical approximation properties of q-Baskakov–Kantorovich operators. Cent. Eur. J. Math. 7(4), 809–818 (2009)

    MATH  MathSciNet  Google Scholar 

  123. V. Gupta, A. Sahai, On linear combination of Phillips operators. Soochow J. Math. 19, 313–323 (1993)

    MATH  MathSciNet  Google Scholar 

  124. V. Gupta, J. Sinha, Simultaneous approximation for generalized Baskakov–Durrmeyer-type operators. Mediterr. J. Math. 4, 483–495 (2007)

    MATH  MathSciNet  Google Scholar 

  125. V. Gupta, G.S. Srivastava, Simultaneous approximation by Baskakov–Szász type operators. Bull. Math. Soc. Sci. de Roumanie (N.S.) 37(85)(3–4), 73–85 (1993)

    Google Scholar 

  126. V. Gupta, G.S. Srivastava, On convergence of derivatives by Szász–Mirakyan–Baskakov type operators. Math. Stud. 64(1–4), 195–205 (1995)

    MATH  MathSciNet  Google Scholar 

  127. V. Gupta, G.S. Srivastava, An estimate of the rate of convergence of modified Baskakov operators for functions of bounded variation. Kyungpook Math. J. 36, 237–247 (1996)

    MATH  MathSciNet  Google Scholar 

  128. V. Gupta, G.S. Srivastava, On the rate of convergence of Phillips operators for functions of bounded variation. Comment. Math. XXXVI, 123–130 (1996)

    Google Scholar 

  129. V. Gupta, G. Tachev, Approximation by Szász–Mirakyan–Baskakov operators. J. Appl. Funct. Anal. 9(3–4), 308–309 (2014)

    Google Scholar 

  130. V. Gupta, D.K. Verma, Approximation by complex Favard–Szász–Mirakjan–Stancu operators in compact disks. Math. Sci. 6(25), pp. 8 (2012)

    Google Scholar 

  131. V. Gupta, H. Wang, The rate of convergence of q-Durrmeyer operators for \(0 < q < 1\). Math. Meth. Appl. Sci. 31, 1946–1955 (2008)

    MATH  MathSciNet  Google Scholar 

  132. V. Gupta, R. Yadav, Better approximation by Stancu Beta operators. Rev. Anal. Numér. Théor. Approx. 40(2), 149–155 (2011)

    MATH  MathSciNet  Google Scholar 

  133. V. Gupta, R. Yadav, Direct estimates in simultaneous approximation for BBS operators. Appl. Math. Comput. 218(22), 11290–11296 (2012)

    MATH  MathSciNet  Google Scholar 

  134. V. Gupta, R. Yadav, Rate of convergence for generalized Baskakov operators. Arab J. Math. Sci. 18(1), 39–50 (2012)

    MATH  MathSciNet  Google Scholar 

  135. V. Gupta, X.M. Zeng, Rate of convergence for the Bézier variant of Balazs–Kantorovich operators. Math. Slovaca 57, 349–358 (2007)

    MATH  MathSciNet  Google Scholar 

  136. V. Gupta, X.M. Zeng, Approximation by Bézier variant of the Szász–Kantorovich operator in case \(0 <\alpha < 1\). Georgian Math. J. 17, 253–260 (2010)

    MATH  MathSciNet  Google Scholar 

  137. V. Gupta, G.S. Srivastava, A. Sahai, On simultaneous approximation by Szász–Beta operators. Soochow J. Math. 11(1), 1–11 (1995)

    MathSciNet  Google Scholar 

  138. V. Gupta, V. Vasishtha, M.K. Gupta, Rate of convergence of the Szász–Kantorovich–Bézier operators for bounded variation functions. Publ. Inst. Math. Nouv. Sér. 72(86), 137–143 (2002)

    MathSciNet  Google Scholar 

  139. V. Gupta, M.K. Gupta, V. Vasishtha, Simultenaous approximations by summation-integral type operators. Nonlinear Funct. Anal. Appl. 8, 399–412 (2003)

    MATH  MathSciNet  Google Scholar 

  140. V. Gupta, R.N. Mohapatra, Z. Finta, On certain family of mixed summation integral type operators. Math. Comput. Model. 42, 181–191 (2005)

    MATH  MathSciNet  Google Scholar 

  141. V. Gupta, U. Abel, M. Ivan, Rate of convergence of Beta operators of second kind for functions with derivatives of bounded variation. Int. J. Math. Math. Sci. 2005(23), 3827–3833 (2005)

    MATH  MathSciNet  Google Scholar 

  142. V. Gupta, M.A. Noor, M.S. Beniwal, Rate of convergence in simultaneous approximation for Szász–Mirakyan Durrmeyer operators. J. Math. Anal. Appl. 322(2), 964–970 (2006)

    MATH  MathSciNet  Google Scholar 

  143. M.K. Gupta, M.S. Beniwal, P. Goel, Rate of convergence for Szász–Mirakyan–Durrmeyer operators with derivatives of bounded variation. Appl. Math. Comput. 199(2), 828–832 (2008)

    MATH  MathSciNet  Google Scholar 

  144. V. Gupta, P.N. Agrawal, A.R. Gairola, On the integrated Baskakov type operators. Appl. Math. Comput. 213(2), 419–425 (2009)

    MATH  MathSciNet  Google Scholar 

  145. V. Gupta, D.K. Verma, P.N. Agrawal, Simultaneous approximation by certain Baskakov–Durrmeyer–Stancu operators. J. Egyptian Math. Soc. 20(3), 183–187 (2012)

    MATH  MathSciNet  Google Scholar 

  146. V. Gupta, R.P. Agarwal, D.K. Verma, Approximation for a new sequence of summation-integral type operators. Adv. Math. Sci. Appl. 23(1), 35–42 (2013)

    Google Scholar 

  147. V. Gupta, N. Deo, X.M. Zeng, Simultaneous approximation for Szász–Mirakian–Stancu–Durrmeyer operators. Anal. Theory Appl. 29(1), 86–96 (2013)

    MathSciNet  Google Scholar 

  148. M. Heilmann, Direct and converse results for operators of Baskakov–Durrmeyer type. Approx. Theory Appl. 5(1), 105–127 (1989)

    MATH  MathSciNet  Google Scholar 

  149. M. Heilmann, On simultaneous approximation by the method of Baskakov–Durrmeyer operators. Numer. Funct. Anal. Optim. 10, 127–138 (1989)

    MATH  MathSciNet  Google Scholar 

  150. H. Heilmann, M.W. Muller, Direct and converse results on weighted simultaneous approximation by the method of operators of Baskakov–Durrmeyer type. Result. Math. 16, 228–242 (1989)

    MATH  MathSciNet  Google Scholar 

  151. M. Heilmann, G. Tachev, Commutativity, direct and strong converse results for Phillips operators. East J. Approx. 17 (3), 299–317 (2011)

    MATH  MathSciNet  Google Scholar 

  152. F. Herzog, J.D. Hill, The Bernstein polynomials for discontinuous functions. Amer. J. Math. 68, 109–124 (1946)

    MATH  MathSciNet  Google Scholar 

  153. E. Hewitt, K. Stromberg, Real and Abstract Analysis (McGraw Hill, New York, 1956)

    Google Scholar 

  154. E.W. Hobson, On a general convergence theorem and the theory of the representation of a function by series of normal functions. Proc. London Math. Soc. 6, 349–395 (1908)

    MATH  MathSciNet  Google Scholar 

  155. W. Hoeffding, The L 1 norm of the approximation error for Bernstein-type polynomials. J. Approx. Theory 4, 347–356 (1971)

    Google Scholar 

  156. Y.H. Hua, S.Y. Shaw, Rate of approximation for functions of bounded variation by integral operators. Period. Math. Hungar. 46(1), 41–60 (2003)

    MATH  MathSciNet  Google Scholar 

  157. M. Ismail, P. Simeonov, On a family of positive linear integral operators. Notions of Positivity and the Geometry of Polynomials. Trends in Mathematics (Springer, Basel, 2011), pp. 259–274

    Google Scholar 

  158. N. Ispir, I. Yuksel, On the Bézier variant of Srivastava–Gupta operators. Appl. Math. E-Notes 5, 129–137 (2005)

    MATH  MathSciNet  Google Scholar 

  159. N. Ispir, A. Aral, O. Dogru, On Kantorovich process of a sequence of generalized linear operators. Nonlinear Funct. Anal. Optim. 29(5–6), 574–589 (2008)

    MATH  MathSciNet  Google Scholar 

  160. D. Jackson, The Theory of Approximation. American Mathematical Society Colloquium Publications, vol. 11 (American Mathematical Society, New York, 1930)

    Google Scholar 

  161. G.C. Jain, Approximation of functions by a new class of linear operators. J. Austral. Math. Soc. 13(3), 271–276 (1972)

    MATH  MathSciNet  Google Scholar 

  162. C. Jordan, Calculus of Finite Differences (Chelsea, New York, 1965)

    MATH  Google Scholar 

  163. V. Kac, P. Cheung, Quantum Calculus (Springer, New York, 2002)

    MATH  Google Scholar 

  164. L.V. Kantorovich, Sur certains developpments suivant les polynomes de la forme de S. Bernstein, I, II. C. R. Acad. Sci. USSR 20, 563–568 (1930)

    Google Scholar 

  165. H. Karsli, Convergence and rate of convergence by nonlinear singular integral operators depending on two parameters. Appl. Anal. 85(6,7), 781–791 (2006)

    Google Scholar 

  166. H. Karsi, V. Gupta, Rate of convergence by nonlinear integral operators for functions of bounded variation. Calcolo 45, 87–97 (2008)

    MathSciNet  Google Scholar 

  167. H. Karsli, E. Ibikli, Approximation properties of convolution type singular integral operators depending on two parameters and of their derivatives in L 1(a, b). Proc. 16th Int. Conf. Jangjeon Math. Soc. 16, 66–76 (2005)

    Google Scholar 

  168. H.S. Kasana et al., Modified Szász operators. In Proceedings of International Conference on Mathematical Analysis and Applications, Kuwait (Pergamon, Oxford, 1985), pp. 29–41

    Google Scholar 

  169. H.S. Kasana, P.N. Agrawal, Approximation by linear combination of Szász–Mirakian operators. Colloquium Math. 80(1), 123–130 (1999)

    MATH  MathSciNet  Google Scholar 

  170. H.S. Kasana, P.N. Agrawal, V. Gupta, Inverse and saturation theorems for linear combination of modified Baskakov operators. Approx. Theory Appl. 7 (2), 65–81 (1991)

    MATH  MathSciNet  Google Scholar 

  171. M.K. Khan, Approximation properties of beta operators. In Progress in Approximation Theory (Academic, New York, 1991), pp. 483–495

    Google Scholar 

  172. J.P. King, Positive linear operstors which preserve x 2. Acta Math. Hungar. 99, 203–208 (2003)

    MATH  MathSciNet  Google Scholar 

  173. H.B. Knoop, X.L. Zhou, The lower estimate for linear positive operators (II). Result. Math. 25, 315–330 (1994)

    MATH  MathSciNet  Google Scholar 

  174. P.P. Korovkin, Linear Operators and Approximation Theory (Hindustan Publ. Corp., India, 1960)

    Google Scholar 

  175. B. Lenze, On the points of regularity of multivariate functions of bounded variation. Real Anal. Exch. 29(2), 647–656 (2003/2004)

    Google Scholar 

  176. P. Li, Y.H. Gong, The order of approximation by the generalized Bernstein Bézier polynomials. J. China Univ. Sci. Technol. 15(1), 15–18 (1985)

    MATH  MathSciNet  Google Scholar 

  177. Z. Liu, Approximation of continuous functions by the generalized Bernstein Bézier polynomials. Approx. Theory Appl. 4(2), 105–130 (1986)

    Google Scholar 

  178. Z. Liu, Approximation of the Kantorovich–Bézier operators in L p (0, 1). Dongbey Shuxue 7(2), 199–205 (1991)

    Google Scholar 

  179. M. Loéve, Probability Theory I, 4th edn. (Springer, New York, 1977)

    MATH  Google Scholar 

  180. G.G. Lorentz, Zur Theoorie der Polynome von S. Bernstein. Mat. Sb. 2, 543–556 (1937)

    Google Scholar 

  181. G.G. Lorentz, Bernstein Polynomials (University of Toronto Press, Toronto, 1953)

    MATH  Google Scholar 

  182. G.G. Lorentz, Bernstein Polynomials, 2nd ed. (Chelsea Publisher, New York, 1986)

    MATH  Google Scholar 

  183. E.R. Love, G. Prasad, A. Sahai, An improved estimate of the rate of convergence of the integrated Meyer–König and Zeller operators for functions of bounded variation. J. Math. Anal. Appl. 187(1), 1–16 (1994)

    MATH  MathSciNet  Google Scholar 

  184. A. Lupas, Some properties of the linear positive operators, II. Mathematica (Cluj) 9(32), 295–298 (1967)

    Google Scholar 

  185. A. Lupas, Die Folge der Beta-Operatoren. Dissertation, University of Stuttgart, Stuttgart, 1972

    Google Scholar 

  186. A. Lupas, The approximation by means of some linear positive operators. In Approximation Theory, ed. by M.W. Muller, M. Felten, D.H. Mache. Proceedings of the International Doortmund Meeting IDoMAT 95, held in Witten, Germany, 13–17 March 1995. Mathematical Research, vol. 86 (Akadamie Verlag, Berlin, 1995), pp. 201–229

    Google Scholar 

  187. N.I. Mahmudov, V. Gupta, Approximation by genuine Durrmeyer–Stancu polynomials in compact disks. Math. Comput. Model. 55, 278–285 (2012)

    MATH  MathSciNet  Google Scholar 

  188. G. Mastroianni, Su un operatore lineare e positivo. Rend. Acc. Sc. Fis. Mat. Napoli 46(4), 161–176 (1979)

    MATH  MathSciNet  Google Scholar 

  189. C.P. May, Saturation and inverse theorems for combinations of a class of exponential type opertors. Can. J. Math. XXVIII, 1224–1250 (1976)

    Google Scholar 

  190. C.P. May, On Phillips operators. J. Approx. Theory 20, 315–322 (1997)

    Google Scholar 

  191. S.M. Mazhar, V. Totik, Approximation by modified Szász operators. Acta Sci. Math. 49, 257–269 (1985)

    MATH  MathSciNet  Google Scholar 

  192. W. Meyer-König, K. Zeller, Bernsteinsche Potenzreihen. Stud. Math. 19, 89–94 (1960)

    MATH  Google Scholar 

  193. C.A. Micchelli, Saturation classes and iterates of operators. Ph.D. Thesis, Stanford University, 1969

    Google Scholar 

  194. G.M. Mirakjan, Approximation des fonctions continues au moyen de polynomes de la forme \({e}^{-nx}\sum {k = 0}^{m_{n}}C_{k,n}{x}^{k}\) [Approximation of continuous functions with the aid of polynomials of the form \({e}^{-nx}\sum {k = 0}^{m_{n}}C_{k,n}{x}^{k}\)]” (in French). Comptes rendus de l’Acad. des Sci. de l’URSS 31, 201–205 (1941)

    Google Scholar 

  195. Gh. Mocica, Problems of Special Functions (Romanian) (Edit. Didact. Pedag., Bucharest, 1988)

    Google Scholar 

  196. G. Mühlbach, Verallgemeinerungen der Bernstein-und der Lagrangepolynome. Rev. Roumaine Math. Pures et Appl. 15(8), 1235–1252 (1970)

    MATH  Google Scholar 

  197. J. Musielak, On some approximation problems in modular spaces. In Constructive Function Theory 1981. Proceedings of International Conference, Varna, 1–5 June 1981 (Publishing House Bulgarian Academy of Sciences, Sofia, 1983), pp. 455–461

    Google Scholar 

  198. G.I. Natanson, On Fourier series of continuous functions of bounded variation (in Russian). Vest. Leningrad. Univ. 7, 54–155 (1972)

    MathSciNet  Google Scholar 

  199. R.S. Phillips, An inversion formula for semi-groups of linear operators. Ann. Math. (Ser.2) 59, 352–356 (1954)

    Google Scholar 

  200. P. Pych-Taberska, Pointwise approximation by partial sums of Fourier series and conjugate series. Funct. Approx. XV, 231–244 (1986)

    Google Scholar 

  201. P. Pych-Taberska, On the rate of pointwise convergence of Bernstein and Kantorovic polynomials. Funct. Approx. XVI, 63–76 (1988)

    Google Scholar 

  202. P. Pych-Taberska, On the rate of pointwise convergence of the Feller operators. Ann. Soc. Math. Pol. Ser I, Commentat Math. 31, 147–156 (1991)

    Google Scholar 

  203. G. Prasad, P.N. Agrrawal, H.S. Kasana, Approximation of functions on [0, ] by a new sequence of modified Szász operators. Math. Forum. 6(2), 1–11 (1983)

    Google Scholar 

  204. Q. Qi, Y. Zhang, Pointwise approximation for certain mixed Szász–Beta operators. Further Progress in Analysis, ed. by H.G.W. Begehr, A.O. Celebi, R.P. Gilbert. Proceedings of 6th International ISAAC Congress (World Scientific Co., Singapore, 2009), pp. 152–163

    Google Scholar 

  205. R.K.S. Rathore, Linear combinations of linear positive operators and generating relations in special functions. Ph.D. Thesis, IIT Delhi, 1973

    Google Scholar 

  206. M.Y. Ren, X.M. Zeng, Approximation by a kind of complex modified q-Durrmeyer type operators in compact disks. J. Inequal. Appl. 2012 ART, 122 (2012)

    Google Scholar 

  207. M.Y. Ren, X.M. Zeng, Approximation by complex q-Bernstein–Schurer operators in compact disks. Georgian Math. J. 20(2) 377–395 (2013)

    MATH  MathSciNet  Google Scholar 

  208. A. Sahai, G. Prasad, On the rate of convergence for modified Szász–Mirakyan operators on functions of bounded variation. Publ. Inst. Math. Nouv. Sér. (N.S.) 53(67), 73–80 (1993)

    Google Scholar 

  209. F. Schurer, On linear positive operators in approximation theory. Ph.D. Thesis, Technical University of Delft, 1965

    Google Scholar 

  210. S.Y. Shaw, W.C. Liaw, Y.L. Lin, Rates for approximation of functions in BV [a, b] and DBV [a, b] by positive linear operators. Chinese J. Math. 21(2), 171–193 (1993)

    Google Scholar 

  211. O. Shisha, B. Mond, The degree of approximation to periodic functions by linear positive operators. J. Approx. Theory 1, 335–339 (1968)

    MATH  MathSciNet  Google Scholar 

  212. O. Shisha, B. Mond, The degree of convergence of sequences of linear positive operators. Proc. Natl. Acad. Sci. 60(4), 196–200 (1968)

    MathSciNet  Google Scholar 

  213. S.P. Singh, On the degree of approximation by Szász operators. Bull. Austral. Math. Soc. 24, 221–225 (1981)

    MATH  MathSciNet  Google Scholar 

  214. T.A.K. Sinha, P.N. Agrawal, A. Sahai, V. Gupta, Improved L p approximation by linear combination of modified Lupas operators. Bull. Inst. Math. Acad. Sinica 17(3), 106–114 (1989)

    MathSciNet  Google Scholar 

  215. R.P. Sinha, P.N. Agrawal, V. Gupta, On simultaneous approximation by modified Baskakov operators. Bull. Soc. Math. Belg. Ser. B 43(2), 217–231 (1991)

    MATH  MathSciNet  Google Scholar 

  216. T.A.K. Sinha, V. Gupta, P.N. Agrawal, A. R. Gairola, Inverse theorem for an iterative combinations of Bernstein–Durrmeyer operators. Studia Univ. Babes Bolyai Mat. LIV(4), 153–164 (2009)

    Google Scholar 

  217. T.A.K. Sinha, P.N. Agrawal, A.R. Gairola, On L p -approximation by iterative combination of Bernstein–Durrmeyer polynomials. ISRN Math. Anal. 2011, 11 (2011). Article 184374

    Google Scholar 

  218. H.M. Srivastava, V. Gupta, A certain family of summantion-integral type operators. Math. Comput. Model. 37, 1307–1315 (2003)

    MATH  MathSciNet  Google Scholar 

  219. H.M. Srivastava, V. Gupta, Rate of convergence for Bézier variant of the Bleimann–Butzer–Hahn operators. Appl. Math. Lett. 18(8), 849–857 (2005)

    MATH  MathSciNet  Google Scholar 

  220. D.D. Stancu, Approximation of functions by a new class of linear polynomial operators. Rev. Roumanie Math. Pure. Appl. 13, 1173–1194 (1968)

    MATH  MathSciNet  Google Scholar 

  221. D.D. Stancu, Use of probabilistic methods in the theory of uniform approximation of continuous functions. Rev. Roumanie Math. Pures Appl. 14, 673–691 (1969)

    MATH  MathSciNet  Google Scholar 

  222. D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operator. Calcolo 20, 211–229 (1983)

    MATH  MathSciNet  Google Scholar 

  223. D.D. Stancu, On the beta approximating operators of second kind. Rev. Anal. Numér. Théor. Approx. 24(1–2), 231–239 (1995)

    MATH  MathSciNet  Google Scholar 

  224. I. Stewart, D. Tall, Complex Analysis (Cambridge University Press, Cambridge, 1983)

    MATH  Google Scholar 

  225. X.H. Sun, On the simultaneous approximation of functions and their derivatives by the Szász–Mirakian operators. J. Approx. Theory 55, 279–288 (1988)

    MATH  MathSciNet  Google Scholar 

  226. T. Swiderski, E. Wachnicki, Nonlinear singular integrals depending on two parameters. Comment. Math. Prace Mat. 40, 181–189 (2000)

    MATH  MathSciNet  Google Scholar 

  227. O. Szász, Generalizations of S. Bernstein’s polynomial to the infinite interval. J. Res. Nat. Bur. Standards 45, 239–245 (1950)

    Google Scholar 

  228. S. Tarabie, On Jain-Beta linear operators. Appl. Math. Inform. Sci. 6(2), 213–216 (2012)

    MathSciNet  Google Scholar 

  229. V. Totik, Approximation by Szász–Mirakjan–Kantorovich operators in \({L}^{p}(p > 1)\). Anal. Math. 9, 147–167 (1983)

    MATH  MathSciNet  Google Scholar 

  230. V. Totik, Uniform approximation by Baskakov and Meyer–König Zeller operators. Period. Math. Hungar. 14(3–4), 209–228 (1983)

    MATH  MathSciNet  Google Scholar 

  231. V. Totik, Uniform approximation by Szász–Mirakyan type operators. Acta Math. Hungar. 41(3–4), 291–307 (1983)

    MATH  MathSciNet  Google Scholar 

  232. V. Totik, Approximation by Bernstein polynomials. Amer. J. Math. 114, 995–1018 (1994)

    MathSciNet  Google Scholar 

  233. L.N. Trefthen, Approximation Theory and Approximation Practice, Siam 2013/ viii, ISBN 978-1-611972-39-9

    Google Scholar 

  234. T. Trif, Approximation of functions of bounded variation by integrated Meyer–König and Zeller operators of finite type. Studia Sci. Math. Hungar. 49(2), 254–268 (2012)

    MATH  MathSciNet  Google Scholar 

  235. S. Umar, Q. Razi, Approximation of function by a generalized Szász operators. Commun. Fac. Sci. L’Univ D’Ankara 34, 45–52 (1985)

    Google Scholar 

  236. J. De La Vallée-Poussin, Sur ĺ approximation des fonctions ď une variable réelle et de leurs dérivées par des polynómes et des suites de Fourier. Bull. Acad. de Sci. Belgique, 193–254 (1908)

    Google Scholar 

  237. D.K. Verma, P.N. Agrawal, Convergence in simultaneous approximation for Srivastava–Gupta operators. Math. Sci. 6(22) (2012)

    Google Scholar 

  238. D.K. Verma, V. Gupta, P.N. Agrawal, Some approximation properties of Baskakov–Durrmeyer–Stancu operators. Appl. Math. Comput. 218(11), 6549–6556 (2012)

    MATH  MathSciNet  Google Scholar 

  239. E. Voronovskaja, Determination de la forme asyptotique de approximation des fonctions par les polynomes de M. Bernstein. C. R. Acad. Sci. URSS 1932, 79–85 (1932)

    MATH  Google Scholar 

  240. Z. Walczak, On certain linear positive operators in polynomial weighted spaces. Acta. Math. Hungar. 101(3), 179–191 (2003)

    MATH  MathSciNet  Google Scholar 

  241. Z. Walczak, V. Gupta, Uniform convergence with certain linear operators. Indian J. Pure. Appl. Math. 38(4), 259–269 (2007)

    MATH  MathSciNet  Google Scholar 

  242. Z. Wang, Foundations of the Theory of Probability and Its Applications (Beijing, 1979)

    Google Scholar 

  243. Y. Wang, S. Guo, Rate of approximation of functions of bounded variation by modified Lupas operators. Bull. Austral. Math. Soc. 44, 177–188 (1991)

    MATH  MathSciNet  Google Scholar 

  244. P.C. Xun, D.X. Zhou, Rate of convergence for Baskakov operators with Jacobi-weights. Acta Math. Appl. Sinica 18, 127–139 (1995)

    Google Scholar 

  245. D. Zeilberger, On an identity of Daubechies. Amer. Math. Monthly 100, 487 (1993)

    MATH  MathSciNet  Google Scholar 

  246. X.M. Zeng, Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions. J. Math. Anal. Appl. 219, 364–376 (1998)

    MATH  MathSciNet  Google Scholar 

  247. X.M. Zeng, On the rate of convergence of the generalized Szász type operators for functions of bounded variation. J. Math Anal. Appl. 226, 309–325 (1998)

    MATH  MathSciNet  Google Scholar 

  248. X.M. Zeng, Rates of Approximation of bounded variation functions by two generalized Meyer-König–Zeller type operators. Comput. Math. Appl. 39, 1–13 (2000)

    MATH  Google Scholar 

  249. X.M. Zeng, Approximation properties of Gamma operators. J. Math. Anal. Appl. 11, 389–401 (2005)

    Google Scholar 

  250. X.M. Zeng, Approximation of absloutely continuous function by Stancu Beta operators. Ukrainian Math. J. 63(11), 1787–1794 (2012)

    MATH  Google Scholar 

  251. X.M. Zeng, W. Chen, On the rate of convergence of the generalized Durrmeyer type operators for functions of bounded variation. J. Approx. Theory 102, 1–12 (2000)

    MATH  MathSciNet  Google Scholar 

  252. X.M. Zeng, F. Cheng, On the rate of approximation of Bernstein type operators. J. Approx. Theory 109(2), 242–256 (2001)

    MATH  MathSciNet  Google Scholar 

  253. X.M. Zeng, V. Gupta, Rate of convergence of Baskakov–Bézier type operators for locally bounded functions. Comput. Math. Appl. 44, 1445–1453 (2002)

    MATH  MathSciNet  Google Scholar 

  254. X.M. Zeng, V. Gupta, Approximation by the Bézier variant of the MKZ–Kantorovich operators in the case \(\alpha < 1\). Cent. Eur. J. Math. 7(3), 550–557 (2009)

    MATH  MathSciNet  Google Scholar 

  255. X.M. Zeng, A. Piriou, On the rate of convergence of two Bernstein–Bézier type operators for bounded variation functions. J. Approx. Theory 95, 369–387 (1998)

    MATH  MathSciNet  Google Scholar 

  256. X.M. Zeng, J.N. Zhao, Exact bounds for some basis functions of appoximation operators. J. Inequal. Appl. 6, 563–575 (2001)

    Google Scholar 

  257. X.M. Zeng, V. Gupta, O. Agratini, Approximation by Bézier variant of the Baskakov–Kantorovich operators in the case \(0 <\alpha < 1\). Rocky Mt. J. Math. (to appear)

    Google Scholar 

  258. D.X. Zhou, On a paper of Mazhar and Totik. J. Approx. Theory 72(3), 290–300 (1993)

    MATH  MathSciNet  Google Scholar 

  259. A. Zygmund, Trigonometric Series (Cambridge University Press, Cambridge, 1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, V., Agarwal, R.P. (2014). Rate of Convergence in Simultaneous Approximation. In: Convergence Estimates in Approximation Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-02765-4_10

Download citation

Publish with us

Policies and ethics