Skip to main content

Load Non-Proportionality in the Computational Models

  • Chapter
  • First Online:
  • 800 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

Abstract

Chapter presents various models for calculating multiaxial fatigue. Unlike many other similar comparisons, this analysis describes damage models from the point of view of the way the non-proportionality loading was taken into account. Many authors, while analysing these models, limit themselves to stating whether a given model can be applied in non-proportional loading conditions. A presumed quantitative analysis of the calculation results compares models of the same class. The authors do not analyse their proposals in relation to the solutions from other areas of fatigue or related fields such as plasticity theory. A comparison of calculation models that take into account the influence of non-proportionality depending on the type of the model as well as what stage of the calculation process this model pertains allows different approaches to be thoroughly revealed. Articles in periodicals do not provide space for a broad cross-sectional comparative analysis of different models. In order to reveal the differences, the introduction to Chap. 4 presents a division of models into classes. This division should facilitate the comparison and an evaluation of calculation methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmadi A, Zenner H (2005) Simulation of microcrack growth for different load sequences and comparison with experimental results. Int J Fatigue 27(8):853–861. doi:10.1016/j.ijfatigue.2005.02.005

    Article  MATH  Google Scholar 

  • Bannantine JA, Socie DF (eds) (1991) A viariable amplitude multiaxial fatigue life prediction method, vol 10. ESIS Publication 10. Mechanical Engineering Publication

    Google Scholar 

  • Benallal A, Marquis D (1987) Constitutive-equations for nonproportional cyclic elasto-viscoplasticity. J Eng Mater Technol Trans Asme 109(4):326–336

    Article  Google Scholar 

  • Benallal A, Marquis D (1988) Effects of non-proportional loadings in cyclic elasto-viscoplasticity: experimental, theoretical and numerical aspects. Eng Computations 5 (3):241–247

    Google Scholar 

  • Bonacuse PJ, Kalluri S (2003) Axial and torsional load-type sequencing in cumulative fatigue: low amplitude followed by high amplitude loading. Biaxial/Multiaxial Fatigue and Fracture. ESIS Publication 31. Elsevier, Amsterdam

    Google Scholar 

  • Bonte M, de Boer A, Liebregts R (2007) Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components. J Sound Vib 302(1–2):379–386. doi:10.1016/j.jsv.2006.11.025

    Article  Google Scholar 

  • Borodii MV, Shukaev SM (2007) Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime. Int J Fatigue 29(6):1184–1191. doi:10.1016/j.ijfatigue.2006.06.014

    Article  MATH  Google Scholar 

  • Brown MW, Miller KJ (1979) High-temperature low-cycle biaxial fatigue of 2 steels. Fatigue Eng Mater 1(2):217–229. doi:10.1111/j.1460-2695.1979.tb00379.x

    Article  Google Scholar 

  • Calloch S, Marquis D (1997) Additional hardening due to tension-torsion nonproportional loadings: influence of the loading path shape. In: Kalluri S, Bonacuse PJ (eds) Multiaxial fatigue and deformation testing techniques, vol 1280. American Society for Testing and Materials Special Technical Publication, USA, pp 113–130. doi:10.1520/stp16215s

  • Calloch S, Marquis D (1999) Triaxial tension-compression tests for multiaxial cyclic plasticity. Int J Plast 15(5):521–549. doi:10.1016/S0749-6419(99)00005-4

    Article  Google Scholar 

  • Carpinteri A, Macha E, Brighenti R, Spagnoli A (1999a) Expected principal stress directions under multiaxial random loading. Part I: theoretical aspects of the weight function method. Int J Fatigue 21(1):83–88. doi:10.1016/S0142-1123(98)00046-2

    Article  Google Scholar 

  • Carpinteri A, Brighenti R, Macha E, Spagnoli A (1999b) Expected principal stress directions under multiaxial random loading. Part II: numerical simulation and experimental assessment through the weight function method. Int J Fatigue 21(1):89–96. doi:10.1016/S0142-1123(98)00047-4

    Article  Google Scholar 

  • Chaboche JL (1991) On some modifications of kinematic hardening to improve the description of Ratchetting Effects. Int J Plast 7(7):661–678. doi:10.1016/0749-6419(91)90050-9

    Article  Google Scholar 

  • Chen X, Gao Q, Sun XF (1996) Low-cycle fatigue under non-proportional loading. Fatigue Fract Eng M 19(7):839–854. doi:10.1111/j.1460-2695.1996.tb01020.x

    Article  Google Scholar 

  • Chen X, Xu S, Huang D (1999) A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading. Fatigue Fract Eng M 22(8):679–686. doi:10.1046/j.1460-2695.1999.t01-1-00199.x

    Article  Google Scholar 

  • Chen X, Jin D, Kim KS (2006) Fatigue life prediction of type 304 stainless steel under sequential biaxial loading. Int J Fatigue 28(3):289–299. doi:10.1016/j.ijfatigue.2005.05.003

    Article  Google Scholar 

  • Cristofori A, Susmel L, Tovo R (2008) A stress invariant based criterion to estimate fatigue damage under multiaxial loading. Int J Fatigue 30(9):1646–1658. doi:10.1016/j.ijfatigue.2007.11.006

    Article  MATH  Google Scholar 

  • Cristofori A, Benasciutti D, Tovo R (2011) A stress invariant based spectral method to estimate fatigue life under multiaxial random loading. Int J Fatigue 33(7):887–899. doi:10.1016/j.ijfatigue.2011.01.013

    Article  Google Scholar 

  • Dong PS, Wei ZG, Hong JK (2010) A path-dependent cycle counting method for variable-amplitude multi-axial loading. Int J Fatigue 32(4):720–734. doi:10.1016/j.ijfatigue.2009.10.010

    Article  Google Scholar 

  • Doquet V, Abbadi M, Bui QH, Pons A (2009) Influence of the loading path on fatigue crack growth under mixed-mode loading. Int J Fract 159(2):219–232. doi:10.1007/s10704-009-9396-6

    Article  Google Scholar 

  • Doquet V, Bui QH, Constantinescu A (2010) Plasticity and asperity-induced fatigue crack closure under mixed-mode loading. Int J Fatigue 32(10):1612–1619. doi:10.1016/j.ijfatigue.2010.02.011

    Article  Google Scholar 

  • Doring R, Hoffmeyer J, Seeger T, Vormwald M (2006) Short fatigue crack growth under nonproportional multiaxial elastic-plastic strains. Int J Fatigue 28(9):972–982. doi:10.1016/j.ijfatigue.2005.08.012

    Article  Google Scholar 

  • Duprat D, Boudet R, Davy A (1997) A simple model to predict fatigue strength with out-of-phase tension-bending and torsion stress condition. Adv Fract Res 1–6:1379–1386

    Google Scholar 

  • Fatemi A, Shamsaei N (2011) Multiaxial fatigue: an overview and some approximation models for life estimation. Int J Fatigue 33(8):948–958. doi:10.1016/j.ijfatigue.2011.01.003

    Article  Google Scholar 

  • Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng M 11(3):149–165. doi:10.1111/j.1460-2695.1988.tb01169.x

    Article  Google Scholar 

  • Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34. doi:10.1016/S0142-1123(97)00081-9

    Article  Google Scholar 

  • Findley WN (1959) A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. J Eng Ind 301–306:39

    Google Scholar 

  • Francois M (2001) A plasticity model with yield surface distortion for non proportional loading. Int J Plast 17(5):703–717. doi:10.1016/S0749-6419(00)00025-5

    Article  MATH  Google Scholar 

  • Fremy F, Pommier S, Poncelet M, Raka B, Galenne E, Courtin S, Roux J-CL (2013) Load path effect on fatigue crack propagation in I + II + III mixed mode conditions—part 1: experimental investigations. Int J Fatigue (0). doi:http://dx.doi.org/10.1016/j.ijfatigue.2013.06.002

  • Garud YS (1981) Multiaxial fatigue—a survey of the state of the art. J Test Eval 9(3):165–178

    Article  Google Scholar 

  • Goncalves CA, Araujo JA, Mamiya EN (2005) Multiaxial fatigue: a stress based criterion for hard metals. Int J Fatigue 27(2):177–187. doi:10.1016/j.ijfatigue.2004.05.006

    Article  MATH  Google Scholar 

  • Gough HJ (1950) Engineering steels under combined cyclic and static stresses. J Appl Mech T Asme 17(2):113–125

    Google Scholar 

  • Hassan T, Taleb L, Krishna S (2008) Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models. Int J Plast 24(10):1863–1889. doi:10.1016/j.ijplas.2008.04.008

    Article  MATH  Google Scholar 

  • Huang Y, Mahin SA (2010) Simulation the inelastic seismic behaviour of steel braced frames inculuding the effects. Pacific Earthquake Engineering Research Center Collage of Engineering, University of California, Berkeley

    Google Scholar 

  • Itoh T, Miyazaki T (2003) A damage model for estimating low cycle fatigue lives under nonproportional multiaxial loading. ESIS Publ 31:423–439

    Google Scholar 

  • Itoh T, Sakane M, Ohnami M, Socie DF (1995) Non-proportional low cycle fatigue criterion for type-304 stainless-steel. J Eng Mater Technol Trans Asme 117(3):285–292. doi:10.1115/1.2804541

    Article  Google Scholar 

  • Itoh T, Sakane M, Hata T, Hamada N (2006) A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading. Int J Fatigue 28(5–6):459–466. doi:10.1016/j.ijfatigue.2005.08.007

    Article  MATH  Google Scholar 

  • Itoh T, Ozaki T, Amaya T, Sakane M (2007) Determination of stress and strain ranges under non-proportional cyclic loading. In: Proceedings of the 8th international conference on multiaxial fatigue and fracture, Sheffield, UK, p S7B-3

    Google Scholar 

  • Jiang Y, Kurath P (1996a) A theoretical evaluation of plasticity hardening algorithms for nonproportional loadings. Acta Mech 118(1–4):213–234. doi:10.1007/bf01410518

    Article  MATH  Google Scholar 

  • Jiang YY, Kurath P (1996b) Characteristics of the Armstrong-Frederick type plasticity models. Int J Plast 12(3):387–415. doi:10.1016/s0749-6419(96)00013-7

    Article  MATH  Google Scholar 

  • Jiang YY, Kurath P (1997) Nonproportional cyclic deformation: critical experiments and analytical modeling. Int J Plast 13(8–9):743–763. doi:10.1016/S0749-6419(97)00030-2

    Article  MATH  Google Scholar 

  • Jiang Y, Sehitoglu H (1996) Modeling of cyclic ratchetting plasticity. 1. Development of constitutive relations. J Appl Mech T Asme 63(3):720–725. doi:10.1115/1.2823355

    Article  MATH  Google Scholar 

  • Kanazawa K, Miller KJ, Brown MW (1977) Low-cycle fatigue under out-of-phase loading conditions. J Eng Mater Technol Trans Asme 99(3):222–228

    Article  Google Scholar 

  • Kanazawa K, Miller KJ, Brown MW (1979) Cyclic deformation of 1-percent Cr-Mo-V steel under out-of-phase loads. Fatigue Eng Mater 2(2):217–228. doi:10.1111/j.1460-2695.1979.tb01357.x

    Article  Google Scholar 

  • Karolczuk A (2006) Plastic strains and the macroscopic critical plane orientations under combined bending and torsion with constant and variable amplitudes. Eng Fract Mech 73(12):1629–1652. doi:10.1016/j.engfracmech.2006.02.005

    Article  Google Scholar 

  • Karolczuk A (2008) Non-local area approach to fatigue life evaluation under combined reversed bending and torsion. Int J Fatigue 30(10–11):1985–1996. doi:10.1016/j.ijfatigue.2008.01.007

    Article  MATH  Google Scholar 

  • Karolczuk A, Macha E (2005) A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int J Fract 134(3–4):267–304. doi:10.1007/s10704-005-1088-2

    Article  MATH  Google Scholar 

  • Lagoda T, Macha E, Bedkowski W (1999) A critical plane approach based on energy concepts: application to biaxial random tension-compression high-cycle fatigue regime. Int J Fatigue 21(5):431–443. doi:10.1016/S0142-1123(99)00003-1

    Article  Google Scholar 

  • Lagoda T, Macha E, Nieslony A (2005) Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading. Fatigue Fract Eng M 28(4):409–420. doi:10.1111/j.1460-2695.2005.00877.x

    Article  Google Scholar 

  • Langer BF (ed) (1971) Pressure vessel engineering technology. Elsevier Publishing Company Limited, Amsterdam

    Google Scholar 

  • Lee SB (1985) A criterion for fully reversed out-of-phase torsion and bending. ASTM Int 16. doi:10.1520/STP36242S

  • Lee YL, Chiang YJ (1991) Fatigue predictions for components under biaxial reversed loading. J Test Eval 19(5):9. doi:10.1520/JTE12587J

    Google Scholar 

  • Lei Y (2005) J-integral evaluation for cases involving non-proportional stressing. Eng Fract Mech 72(4):577–596. doi:10.1016/j.engfracmech.2004.04.003

    Article  Google Scholar 

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics ductile, creep, fatigue and brittle failures. Springer, Berlin, Heidelberg. doi:10.1007/b138882

  • Li B, Reis L, de Freitas M (2009) Comparative study of multiaxial fatigue damage models for ductile structural steels and brittle materials. Int J Fatigue 31(11–12):1895–1906. doi:http://dx.doi.org/10.1016/j.ijfatigue.2009.01.006

  • Liu KC, Wang JA (2001) An energy method for predicting fatigue life, crack orientation, and crack growth under multiaxial loading conditions. Int J Fatigue 23:S129–S134

    Article  Google Scholar 

  • Liu Y, Gao Q, Kang G (2011) A damage-coupled multi-axial time-dependent low cycle fatigue failure model for SS304 stainless steel at high temperature. Acta Metallurgica Sinica-English Letters 24(2):169–174

    Google Scholar 

  • LS-DYNA (2012) Keyword user’s manual. Version 971 R6.1.0 edn. Livermore Software Technology Corporation (LSTC)

    Google Scholar 

  • Macha E (1989) Simulation investigations of the position of fatigue fracture plane in materials with biaxial loads. Materialwiss Werkst 20(4):132–136. doi:10.1002/mawe.19890200405

    Article  Google Scholar 

  • Macha E (1991) Generalized fatigue criterion of maximum shear and normal strains on the fracture plane for materials under multiaxial random loadings. Materialwiss Werkst 22(6):203–210. doi:10.1002/mawe.19910220605

    Article  Google Scholar 

  • Macha E (1996) Spectral method of fatigue life calculation under random multiaxial loading. Mater Sci 32(3):339–349. doi:10.1007/bf02539171

  • Macha E, Sonsino CM (1999) Energy criteria of multiaxial fatigue failure. Fatigue Fract Eng M 22(12):1053–1070

    Article  Google Scholar 

  • Mamiya EN, Araujo JA, Castro FC (2009) Prismatic hull: a new measure of shear stress amplitude in multiaxial high cycle fatigue. Int J Fatigue 31(7):1144–1153. doi:10.1016/j.ijfatigue.2008.12.010

    Article  MATH  Google Scholar 

  • Mcdiarmid DL (1991) A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract Eng M 14(4):429–453. doi:10.1111/j.1460-2695.1991.tb00673.x

    Article  Google Scholar 

  • Meggiolaro MA, de Castro JTP (2012) An improved multiaxial rainflow algorithm for non-proportional stress or strain histories—part I: enclosing surface methods. Int J Fatigue 42:217–226. doi:10.1016/j.ijfatigue.2011.10.014

    Article  Google Scholar 

  • Morel F (1998) A fatigue life prediction method based on a mesoscopic approach in constant amplitude multiaxial loading. Fatigue Fract Eng M 21(3):241–256. doi:10.1046/j.1460-2695.1998.00452.x

    Article  MathSciNet  Google Scholar 

  • Morel F (2000) A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading. Int J Fatigue 22(2):101–119. doi:10.1016/S0142-1123(99)00118-8

    Article  Google Scholar 

  • Morel F, Bastard M (2003) A multiaxial life prediction method applied to a sequence of non similar loading in high cycle fatigue. Int J Fatigue 25(9–11):1007–1012. doi:10.1016/S0142-1123(03)00113-0

    Article  Google Scholar 

  • Nguyen N, Bacher-Hoechst M, Sonsino CM (2012) Spectral fatigue life estimation for components under multiaxial random loading. Revue De Metallurgie-Cahiers D Informations Techniques 109 (3):149–156. doi:10.1051/metal/2012014

  • Niazi M, Wisselink H, Meinders T, ten Horn C (2010) Implementation of an anisotropic damage material model using general second order damage tensor. Steel Res Int 81(9):1396–1399

    Google Scholar 

  • Nieslony A (2010) Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method. J Theor Appl Mech 48(1):233–254

    Google Scholar 

  • Niesłony A, Macha E (2007) Spectral method in multiaxial random fatigue. In: Lecture notes in applied and computational mechanics, vol 33. Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-73823-7

  • Nishihara T, Kawamoto M (1945) The strength of metals under combined alternating bending and torsion with phase difference. Mem Coll Eng 11:85–112 Kyoto Imperial University

    Google Scholar 

  • Nisihara T, Kawamoto M (1945) The strength of metals under combined bending and twisting with phase difference. Mem Coll Eng 9:85–112 Kyoto Imperial University

    Google Scholar 

  • Nitta A, Ogata T, Kuwabara K (1989) Fracture mechanisms and life assessment under high-strain biaxial cyclic loading of type-304 stainless-steel. Fatigue Fract Eng M 12(2):77–92. doi:10.1111/j.1460-2695.1989.tb00515.x

    Article  Google Scholar 

  • Papadopoulos I (1998) Critical plane approaches in high-cycle fatigue: on the definition of the amplitude and mean value of the smear stress acting on the critical plane. Fatigue Fract Eng M 21(3):269–285. doi:10.1046/j.1460-2695.1998.00459.x

    Article  Google Scholar 

  • Papadopoulos IV (2001) Long life fatigue under multiaxial loading. Int J Fatigue 23(10):839–849. doi:10.1016/S0142-1123(01)00059-7

    Article  Google Scholar 

  • Papadopoulos IV, Davoli P, Gorla C, Filippini M, Bernasconi A (1997) A comparative study of multiaxial high-cycle fatigue criteria for metals. Int J Fatigue 19(3):219–235. doi:10.1016/S0142-1123(96)00064-3

    Article  Google Scholar 

  • Pitoiset X, Preumont A (2000) Spectral methods for multiaxial random fatigue analysis of metallic structures. Int J Fatigue 22(7):541–550. doi:10.1016/s0142-1123(00)00038-4

    Article  Google Scholar 

  • Reddy SC, Fatemi A (1992) Small crack-growth in multiaxial fatigue. Am Soc Test Mater 1122:276–298. doi:10.1520/Stp24164s

    Google Scholar 

  • Rozumek D, Macha E (2009) A survey of failure criteria and parameters in mixed-mode fatigue crack growth. Mater Sci 45(2):190–210. doi:10.1007/s11003-009-9179-2

  • Rozumek D, Marciniak Z (2011) Fatigue crack growth in AlCu4Mg1 under nonproportional bending-with-torsion loading. Mater Sci 46(5):685–694

    Google Scholar 

  • Shamsaei N, Fatemi A (2010) Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions. Mat Sci Eng A Struct 527(12):3015–3024. doi:10.1016/j.msea.2010.01.056

    Article  Google Scholar 

  • Shamsaei N, Fatemi A, Socie DF (2010a) Multiaxial cyclic deformation and non-proportional hardening employing discriminating load paths. Int J Plast 26(12):1680–1701. doi:10.1016/j.ijplas.2010.02.006

    Article  MATH  Google Scholar 

  • Skibicki D (2007) Experimental verification of fatigue loading nonproportionality model. In: Proceedings of the 8th international conference on multiaxial fatigue and fracture, Sheffield, UK, pp S7B-1

    Google Scholar 

  • Skibicki D, Sempruch J (2004) Use of a load non-proportionality measure in fatigue under out-of-phase combined bending and torsion. Fatigue Fract Eng M 27(5):369–377. doi:10.1111/j.1460-2695.2004.00757.x

    Article  Google Scholar 

  • Smith KN, Watson P, Topper TH (1970) Stress–strain function for fatigue of metals. J Mater 5(4):767

    Google Scholar 

  • Socie D (1987) Multiaxial fatigue damage models. J Eng Mater Technol Trans Asme 109(4):293–298

    Article  Google Scholar 

  • Socie DF, Marquis GB (2000) Multiaxial fatigue. Society of Automotive Engineers, Warrendale

    Google Scholar 

  • Sonsino CM (1995) Multiaxial fatigue of welded-joints under in-phase and out-of-phase local strains and stresses. Int J Fatigue 17(1):55–70. doi:10.1016/0142-1123(95)93051-3

    Article  Google Scholar 

  • Sonsino CM, Kiippers M, Zenner H, Yousefi-Hashtyani F (2005) Present limitations in the assessment of components under multiaxial service loading. Materialprufung 47(5):255–259

    Google Scholar 

  • Tanaka E (1994) A nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening. Eur J Mech A Solid 13(2):155–173

    MATH  Google Scholar 

  • Wang CH, Brown MW (1996) Life prediction techniques for variable amplitude multiaxial fatigue. 1. Theories. J Eng Mater Technol Trans Asme 118(3):367–370. doi:10.1115/1.2806821

    Article  Google Scholar 

  • Weber B, Ngargueudedjim K, Fotsing BS, Robert JL (2006) On the efficiency of the integral approach in multiaxial fatigue. Materialprufung 48(4):156–159

    Google Scholar 

  • Wu M, Itoh T, Shimizu Y, Nakamura H, Takanashi M (2012) Low cycle fatigue life of Ti-6Al-4 V alloy under non-proportional loading. Int J Fatigue 44:14–20. doi:10.1016/j.ijfatigue.2012.06.006

    Article  Google Scholar 

  • Xiao L, Kuang ZB (1996) Biaxial path dependence of macroscopic response and microscopic dislocation substructure in type 302 stainless steel. Acta Mater 44(8):3059–3067. doi:10.1016/1359-6454(95)00441-6

    Article  Google Scholar 

  • Zenner H, Simburger A, Liu J (2000a) On the fatigue limit of ductile metals under complex multiaxial loading (vol 22, p 137, 2000). Int J Fatigue 22(9):821–821. doi:10.1016/S0142-1123(00)00060-8

  • Zhang JX, Jiang YY (2008) Constitutive modeling of cyclic plasticity deformation of a pure polycrystalline copper. Int J Plast 24(10):1890–1915. doi:10.1016/j.ijplas.2008.02.008

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Skibicki .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Skibicki, D. (2014). Load Non-Proportionality in the Computational Models. In: Phenomena and Computational Models of Non-Proportional Fatigue of Materials. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-01565-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01565-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01564-4

  • Online ISBN: 978-3-319-01565-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics