Skip to main content

Stabilization of Wave Equation Using Standard/Fractional Derivative in Boundary Damping

  • Chapter
Advances in the Theory and Applications of Non-integer Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 257))

Abstract

We discuss the problem of stabilization of wave equation by means of the standard or fractional derivative in boundary damping. The problem is being reduced to a selection between the proportional or fractional integrator of order 1 − α feedback controllers. The fractional integration leads to the strong asymptotic stability only, while the proportional feedback control can ensure the exponential stability. This means that exponential stability is not robust around the value α = 1. We shall discuss mathematical and control theory aspects of this fact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one–parameter semigroups. Transactions of the American Mathematical Society 306(2), 837–852 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arendt, W., Batty, C.J.K., Neubrander, F., Hieber, M.: Vector–valued Laplace Transforms and Cauchy Problems, 2nd edn. Springer–Basel AG/Birkhäuser, Basel (2011)

    Book  MATH  Google Scholar 

  3. Bajlekova, E.G.: Fractional Evolution Equations in Banach Spaces. PhD. Eindhoven University (2001)

    Google Scholar 

  4. Bierens De Hann, D.: Nouvelles Tables d’Intégrales Définies. P. Engels, Leide (1867), There are numerous reprints of these tables https://jscholarship.library.jhu.edu/handle/1774.2/121

  5. Bonnet, C., Partington, J.R.: Stabilization of some fractional systems of neutral type. Automatica 43, 2047–2053 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  7. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Function, vol. 3. McGraw–Hill Book Company, Inc., New York (1955)

    Google Scholar 

  8. Grabowski, P.: Well–posedness and stability analysis of hybrid feedback systems using Shkalikov’s theory. Opuscula Mathematica 26, 45–97 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Grabowski, P.: The motion planning problem and exponential stabilization of a heavy chain, Pt. II. Opuscula Mathematica 28, 481–505 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Haddar, H., Li, J.R., Matignon, D.: Efficient solution of a wave equation with fractional-order dissipative terms. Journal of Computational and Applied Mathematics 234, 2003–(2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kexue, L., Jigen, P.: Fractional Abstract Cauchy Problems. Integral Equations and Operator Theory 70, 333–361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kexue, L., Jigen, P.: A novel characteristic of solution operator for the fractional abstract Cauchy problem. Journal of Mathematical Analysis and Applications 385, 786–796 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laudebat, L., Bidan, P., Montseny, G.: Modeling and optimal identification of pseudodifferential electrical dynamics by means of diffusive representation–Part I: Modeling. IEEE Transactions on Circuits and Systems–I: Regular Papers 51, 1801–1813 (2004)

    Article  MathSciNet  Google Scholar 

  14. Liang, J., Meng, M.Q.H., Chen, Y.Q., Fullmer, R.: Fractional-order boundary control of fractional wave equation with delayed boundary measurement using Smith predictor. In: Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, December 14-17, Paper FrC01.6, pp. 5088–5093 (2004)

    Google Scholar 

  15. Lyubich Yu, I., Phóng, V.Q.: Asymptotic stability of linear differential equations in Banach spaces. Studia Mathematica 88(1), 37–42 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications. Proceedings of IMACS-SMC, vol. 2, pp. 963–968. Lille, France (1996)

    Google Scholar 

  17. Matignon, D., Zwart, H.: Standard diffusive systems as well-posed linear systems. Submitted to International of Control (2010)

    Google Scholar 

  18. Mbodje, B.: Wave energy decay under fractional derivative controls. IMA Journal of Mathematical Control and Information 23, 237–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mbodje, B., Montseny, G.: Boundary fractional derivative control of the wave equation. IEEE Transactions on Automatic Control 40, 368–382 (1995)

    Article  MathSciNet  Google Scholar 

  20. Montseny, G.: Diffusive representation of pseudo–differential time operators. ESAIM Proceedings 5, 159–175 (1995); Special issue: Fractional Differential Systems Models Methods and Applications

    Article  MathSciNet  Google Scholar 

  21. Quinn, J.P., Russell, D.L.: Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping. Proceedings of the Royal Society of Edinbourgh A 77, 97–127 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  23. Schwartz, L.: Cours professé à l’Ecole Polytechnique, Paris II. Hermann, Paris (1967)

    Google Scholar 

  24. Sidorov, Y.V., Fedoryuk, M.V., Shabunin, M.I.: Lectures on the Theory of Functions of a Complex Variable. Mir Publishers, Moscow (1985)

    Google Scholar 

  25. Xiong, L., Zhao, Y., Jiang, T.: Stability analysis of linear fractional order neutral system with multiple delays by algebraic approach. World Academy of Sciences, Engineering and Technology 52, 983–986 (2011)

    Google Scholar 

  26. Zhang, Y., Wang, X., Wang, Y.: Boundary Controller of the Anti-stable Fractional-Order Vibration Systems. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011, Part II. LNCS, vol. 6676, pp. 175–181. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Grabowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grabowski, P. (2013). Stabilization of Wave Equation Using Standard/Fractional Derivative in Boundary Damping. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds) Advances in the Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol 257. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00933-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00933-9_9

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00932-2

  • Online ISBN: 978-3-319-00933-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics