Skip to main content

Electromagnetic Wave Propagation in Nonlinear Layered Waveguide Structures: Computational Approach to Determine Propagation Constants

  • Conference paper
  • First Online:
Book cover Inverse Problems and Large-Scale Computations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 52))

  • 930 Accesses

Abstract

A plane multilayered waveguide structure is considered. The layers are located between two half-spaces with constant permittivities. The permittivity in each layer can be a constant or nonlinear (depends arbitrarily on modulus of the electric field intensity). We consider propagation of polarized electromagnetic waves in such a structure. The physical problem is reduced to (nonlinear) boundary eigenvalue problem in a multiply-connected domain. We suggest a numerical approach to calculate propagation constants (eigenvalues) for (nonlinear) layered waveguide structures based on numerical solution of a Cauchy problem in each layer. By means of transmission conditions on the layer boundaries we can define initial data for each Cauchy problem. When all Cauchy problems are solved we construct a function that depends on the spectral parameter. The zeros of this function which can be effectively calculated are the sought-for propagation constants (eigenvalues).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let us describe why in this nonlinear problem it is impossible to consider complex values of γ. As \(\mathbf{E} = \left (0,\mathrm{ E}_{y}(x){e}^{i\gamma z}, 0\right ) = {e}^{i\gamma z}(0,\mathrm{ E}_{y}(x), 0)\), then \(\vert \mathbf{E}{\vert }^{2} = \vert {e}^{i\gamma z}{\vert }^{2} \cdot \vert \mathrm{E}_{y}{\vert }^{2}\). As it is known \(\vert {e}^{i\gamma z}\vert = 1\) if \(\mathop{\mathrm{Im}}\nolimits \gamma = 0\). Let \(\gamma =\gamma ^{\prime} + i\gamma ^{\prime\prime}\) and \(\mathop{\mathrm{Im}}\nolimits \gamma \neq 0\). Then \(\vert {e}^{i\gamma z}\vert = \vert {e}^{i\gamma ^{\prime}z}\vert \cdot \vert {e}^{-\gamma ^{\prime\prime}z}\vert = {e}^{-\gamma ^{\prime\prime}z}\), that is Eq. (3) contains \(z\). This means that the function Y (x) depends on z. This contradicts to the choice of E y (x). In the linear problem it is possible to consider complex γ.

  2. 2.

    Definition 1 is a nonclassical analog of the known definition of the characteristic number of a linear operator function depending nonlinearly on the spectral parameter [5]. This definition, on the one hand, is an extension of the classic definition of an eigenvalue to the case of a nonlinear operator function. On the other hand, it corresponds to the physical nature of the problem.

    It is well known that electromagnetic waves in a layer propagate on dedicated frequencies, and there are finite numbers of such frequencies. Fixed values of the spectral parameter γ correspond to these dedicated frequencies. This situation takes place both for linear and nonlinear cases. This is the reason why it is necessary (in theory and applications) to determine eigenvalues γ and eigenfunctions.

  3. 3.

    The nonlinear problem under consideration depends essentially on the initial condition Y (h 0 − 0). Similar problem when the permittivity inside each layer is constant does not depend on an initial condition. This means that in the linear problem the “bundle” of waves with different amplitudes corresponds to each eigenvalue γ. In the nonlinear problem eigenvalues depend on amplitudes.

  4. 4.

    It is clear that the value of the function F depends on the solutions of considered Cauchy problem only.

  5. 5.

    Let us describe why in this nonlinear problem it is impossible to consider complex values of γ. As \(\mathbf{E} = \left (\mathrm{E}_{x}(x){e}^{i\gamma z}, 0,\mathrm{ E}_{z}(x){e}^{i\gamma z}\right ) = {e}^{i\gamma z}\left (\mathrm{E}_{x}(x), 0,\mathrm{ E}_{z}(x)\right )\), then \(\vert \mathbf{E}{\vert }^{2} ={ \left \vert {e}^{i\gamma z}\right \vert }^{2} \cdot \left (\vert \mathrm{E}_{x}{\vert }^{2} + \vert \mathrm{E}_{z}{\vert }^{2}\right )\). As it is known \(\vert {e}^{i\gamma z}\vert = 1\) if \(\mathop{\mathrm{Im}}\nolimits \gamma = 0\). Let \(\gamma = \gamma ^{\prime} + i\gamma ^{\prime\prime}\) and \(\mathop{\mathrm{Im}}\nolimits \gamma \neq 0\). Then \(\vert {e}^{i\gamma z}\vert = \vert {e}^{i\gamma ^{\prime}z}\vert \cdot \vert {e}^{-\gamma ^{\prime\prime}z}\vert = {e}^{-\gamma ^{\prime\prime}z}\), that is system (19) contains \(z\). This means that the functions X(x), Z(x) depend on z. This contradicts to the choice of \(\mathrm{E}_{x}(x)\) and \(\mathrm{E}_{z}(x)\). In the linear problem it is possible to consider complex γ.

  6. 6.

    As the functions f i n and g i are arbitrary it is impossible to integrate system (25). However, there are conditions when the first integral of system (25) can be found. For example, the following condition \(\frac{\partial f_{i}} {\partial \left ({\left \vert E_{z}\right \vert }^{2}\right )} = \frac{\partial g_{i}} {\partial \left ({\left \vert E_{x}\right \vert }^{2}\right )}\), pointed out in [8], leads to the fact that the equation

    $$\displaystyle{\frac{dX} {dZ} = \frac{\left ({\gamma }^{2}\left (\varepsilon _{i}^{z} + g_{i}\right ) + 2\left (\varepsilon _{i}^{x} {-\gamma }^{2} + f_{i}\right ){X}^{2}f_{iv}^{{\prime}}\right )Z} {\left (2{X}^{2}f^{\prime}_{iu} +\varepsilon _{ i}^{x} + f_{i}\right )\left( {\gamma }^{2} -\varepsilon _{i}^{x} - f_{i}\right )X} }$$

    can be transformed into a total differential equation. Using this condition in [11] allows to find DE.

  7. 7.

    It is clear that the value of the function F depends on the solutions of considered Cauchy problem only.

References

  1. Adams, M.J.: An Introduction to Optical Waveguides. Wiley, Chichester (1981)

    Google Scholar 

  2. Boardman, A.D., Egan, P., Lederer, F., Langbein, U., Mihalache, D.: Third-order nonlinear electromagnetic TE and TM guided waves. In: Ponath, H.-E., Stegeman, G.I. (eds.) Nonlinear Surface Electromagnetic Phenomena. Elsevier science Publication, Amsterdam (1991)

    Google Scholar 

  3. Eleonskii, P.N., Oganes’yants, L.G., Silin, V.P.: Cylindrical nonlinear waveguides. Sov. phys. JETP 35(1), 44–47 (1972)

    Google Scholar 

  4. Erugin, N.P.: Book on the Ordinary Differential Equations Theory. Nauka i Technika, Minsk (1979) (in Russian)

    Google Scholar 

  5. Gokhberg, I.Tz., Krein, M.G.: Introduction in the Theory of Linear Nonselfadjoint Operators in Hilbert Space. American Mathematical Society, Providence (1969)

    Google Scholar 

  6. Goncharenko, A.M., Karpenko, V.A.: Optical Waveguide Theory. Nauka i Technika, Minsk (1983) (in Russian)

    Google Scholar 

  7. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    Google Scholar 

  8. Joseph, R.I., Christodoulides, D.N.: Exact field decomposition for TM waves in nonlinear media. Opt. Lett. 12(10), 826–828 (1987)

    Article  Google Scholar 

  9. Lourtioz, J.-M., et al.: Photonic Crystals. Springer, Berlin (2005)

    MATH  Google Scholar 

  10. Schurmann, H.W., Serov, V.S., Shestopalov, Yu.V.: TE-polarized waves guided by a lossless nonlinear three-layer structure. Phys. Rev. E. 58(1), 1040–1050 (1998)

    Article  Google Scholar 

  11. Smirnov, Y.G., Valovik, D.V.: Electromagnetic Wave Propagation in Nonlinear Layered Waveguide Structures. PSU Press, Penza (2011)

    Google Scholar 

  12. Valovik, D.V.: Propagation of TM waves in a layer with arbitrary nonlinearity. Comp. Math. Math. Phys. 51(9), 1622–1632 (2011). doi: 10.1134/s096554251109017x

    Article  MathSciNet  Google Scholar 

  13. Valovik, D.V.: Propagation of electromagnetic waves in a nonlinear metamaterial layer. J. Commun. Tech. Electr. 56(5), 544–556 (2011). doi: 10.1134/s1064226911050111

    Article  Google Scholar 

  14. Valovik, D.V.: Propagation of electromagnetic TE waves in a nonlinear medium with saturation. J. Commun. Tech. Electr. 56(11), 1311–1316 (2011). doi: 10.1134/s1064226911110179

    Article  Google Scholar 

  15. Valovik D.V.: Propagation of TE-waves through a nonlinear metamaterial layer with arbitrary nonlinearity. In: PIERS Proceedings, pp. 193–198, Suzhou, China, 12–16 September 2011

    Google Scholar 

  16. Valovik, D.V.: Electromagnetic TM wave propagation through a nonlinear metamaterial layer with arbitrary nonlinearity. In: PIERS Proceedings, pp. 1676–1680, Kuala Lumpur, Malaysia, 27–30 March 2012

    Google Scholar 

  17. Valovik, D.V.: Conjugation problem for TE waves propagating in a plane nonlinear two-layer dielectric waveguide. Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki. (2), 43–49 (2012) (in Russian)

    Google Scholar 

  18. Valovik, D.V., Smirnov, Y.G.: Propagation of TM waves in a Kerr nonlinear layer. Comp. Math. and Math. Phys. 48(12), 2217–2225 (2008). doi: 10.1134/s0965542508120117

    Article  MathSciNet  Google Scholar 

  19. Valovik, D.V., Smirnov, Y.G., Shirokova, E.A.: Numerical method in the problem of electromagnetic TE wave propagation in a nonlinear two-layer waveguide. Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki. (1), 66–74 (2012) (in Russian)

    Google Scholar 

  20. Valovik, D.V., Zarembo, E.V.: On the Cauchy problem method to solve nonlinear boundary eigenvalue problem for electromagnetic TM wave propagation in a layer with Kerr nonlinearity. J. Commun. Tech. Electr. 58(1), 62–65 (2013). doi: 10.1134/S1064226913010087

    Article  Google Scholar 

  21. Zarembo, E.V.: On the numerical method to solve nonlinear boundary eigenvalue problem for electromagnetic TM wave propgation in a layer with Kerr nonlinearity. Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki. (1), 75–82 (2012) (in Russian)

    Google Scholar 

  22. Zarembo, E.V.: Numerical method to solve nonlinear boundary eigenvalue problem for electromagnetic TE wave propagation in a layer with arbitrary nonlinearity. Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki. (2), 59–74 (2012) (in Russian)

    Google Scholar 

  23. Zarembo, E.V.: Numerical method to solve nonlinear boundary eigenvalue problem for electromagnetic TM wave propagation in a layer with arbitrary nonlinearity. Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki. (3), 58–71 (2012) (in Russian)

    Google Scholar 

Download references

Acknowledgements

I should like to thank Prof. Yu. G. Smirnov for his bright ideas and valuable advice. The work is supported by Russian Federation President Grant (MK-2074.211.1). I also thank to the referee for his remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Valovik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Valovik, D.V. (2013). Electromagnetic Wave Propagation in Nonlinear Layered Waveguide Structures: Computational Approach to Determine Propagation Constants. In: Beilina, L., Shestopalov, Y. (eds) Inverse Problems and Large-Scale Computations. Springer Proceedings in Mathematics & Statistics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-00660-4_6

Download citation

Publish with us

Policies and ethics