Skip to main content

Stem Cells and Cell Replacement Therapy for Parkinson's Disease

  • Chapter
  • First Online:
Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

  • 1406 Accesses

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder caused by a progressive degeneration of the midbrain dopamine (DA) neurons in the substantia nigra pars compacta (SNc) that predominantly affects the ventral population projecting to the dorsal striatum and leads to a gradual dysfunction of the motor system. There is currently no cure for PD. Pharmacological and surgical (e.g. deep brain stimulation) interventions can alleviate some of the symptoms, but lose their efficacy over time. The distinct loss of DA neurons in the SN offers the opportunity to assay neuronal cell replacement, and the clinical transplantation of fetal midbrain neuroblasts in PD patients has shown that this approach is feasible. However, there are multiple problems associated with the use of fetus-derived material, including limited availability. DA neurons derived from stem cells (SC) represent an alternative and unlimited cell source for cell replacement therapies. Currently, human pluripotent SC, such as embryonic (ES), and most recently, induced pluripotent stem cells (iPS), and multipotent (tissue-specific) adult SC are available, although the methodology for a reliable and efficient production of DA neurons necessary for biomedical applications is still underdeveloped. Here, we discuss some essentials for SC and SC-derived DA neurons to become therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6–OHDA:

6–hydroxydopamine

AADC:

Aromatic L-amino acid decarboxylase

BMP:

Bone morphogenic protein

DA:

Dopamine

DAT:

Dopamine transporter

ESC:

Embryonic stem cells

FACS:

Fluorescent activated cell sorting

FGF:

Fibroblast growth factor

GDNF:

Glial cell line-derived neurotrophic factor

iPS:

Induced pluripotent stem cells

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD:

Parkinson’s disease

SC:

Stem cells

SHH:

Sonic hedgehog

SNc:

Substantia nigra, pars compacta

SNCT:

Somatic nuclear cell transfer

SVZ:

Subventricular zone

TGF:

Transforming growth factor

TH:

Tyrosine hydroxylase

VMAT-2:

Vesicular monoamine transporter-2

References

  • Alavian KN, Scholz C, Simon HH (2008) Transcriptional regulation of mesencephalic dopaminergic neurons: the full circle of life and death. Mov Disord 23:319–328

    Article  PubMed  Google Scholar 

  • Alberi L, Sgado P, Simon HH (2004) Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131:3229–3236

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–234

    CAS  PubMed  Google Scholar 

  • Andersson E, Tryggvason U, Deng Q, Friling S, Alekseenko Z, Robert B, Perlmann T, Ericson J (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124:393–405

    Article  CAS  PubMed  Google Scholar 

  • Baldereschi M, Di Carlo A, Rocca WA, Vanni P, Maggi S, Perissinotto E, Grigoletto F, Amaducci L, Inzitari D (2000) Parkinson's disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology 55:1358–1363

    CAS  PubMed  Google Scholar 

  • Belin AC, Westerlund M (2008) Parkinson's disease: a genetic perspective. Febs J 275:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Benabid AL (2007) What the future holds for deep brain stimulation. Expert Rev Med Devices 4:895–903

    Article  PubMed  Google Scholar 

  • Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 22:1246–1255

    Article  PubMed  Google Scholar 

  • Bjorklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Chen IYC, McNaught K, Brownell A-L, Jenkins BG, Wahlestedt C, Kim K-S, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99:2344–2349

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A, Dunnett SB, Brundin P, Stoessl AJ, Freed CR, Breeze RE, Levivier M, Peschanski M, Studer L, Barker R (2003) Neural transplantation for the treatment of Parkinson's disease. Lancet Neurol 2:437–445

    Article  PubMed  Google Scholar 

  • Blelloch R, Venere M, Yen J, Ramalho-Santos M (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1:245–247

    Article  CAS  PubMed  Google Scholar 

  • Borta A, Hoglinger GU (2007) Dopamine and adult neurogenesis. J Neurochem 100:587–595

    Article  CAS  PubMed  Google Scholar 

  • Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa K, Brundin P, Eriksson PS, Li JY (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24:1433–1440

    Article  CAS  PubMed  Google Scholar 

  • Brundin P, Duan W, Sauer H (1994) Functional effects of mesencephalic dopamine neurons and adrenal chromaffin cells grafted to the rodent striatum. Raven Press, New York

    Google Scholar 

  • Burke RE (2008) Programmed cell death and new discoveries in the genetics of parkinsonism. J Neurochem 104:875–890

    Article  CAS  PubMed  Google Scholar 

  • Buytaert-Hoefen KA, Alvarez E, Freed CR (2004) Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells 22:669–674

    Article  CAS  PubMed  Google Scholar 

  • Cantuti-Castelvetri I, Keller-McGandy C, Bouzou B, Asteris G, Clark TW, Frosch MP, Standaert DG (2007) Effects of gender on nigral gene expression and parkinson disease. Neurobiol Dis 26:606–614

    Article  CAS  PubMed  Google Scholar 

  • Carlsson T, Carta M, Winkler C, Bjorklund A, Kirik D (2007) Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson's disease. J Neurosci 27:8011–8022

    Article  CAS  PubMed  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833

    Article  PubMed  Google Scholar 

  • Chen L, Feany MB (2005) Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8:657–663

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ai Y, Slevin JR, Maley BE, Gash DM (2005) Progenitor proliferation in the adult hippocampus and substantia nigra induced by glial cell line-derived neurotrophic factor. Exp Neurol 196:87–95

    Article  CAS  PubMed  Google Scholar 

  • Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 10:3392–3397

    Article  Google Scholar 

  • Chung S, Sonntag KC, Andersson T, Bjorklund LM, Park JJ, Kim DW, Kang UJ, Isacson O, Kim KS (2002) Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 16:1829–1838

    Article  PubMed  Google Scholar 

  • Chung S, Shin BS, Hedlund E, Pruszak J, Ferree A, Kang UJ, Isacson O, Kim KS (2006) Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem 97:1467–1480

    Article  CAS  PubMed  Google Scholar 

  • Clarkson ED, Zawada WM, Adams FS, Bell KP, Freed CR (1998) Strands of embryonic mesencephalic tissue show greater dopamine neuron survival and better behavioral improvement than cell suspensions after transplantation in parkinsonian rats. Brain Res 806:60–68

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Cory S, Lom B (2004) Neurotrophic regulation of retinal ganglion cell synaptic connectivity: from axons and dendrites to synapses. Int J Dev Biol 48:947–956

    Article  CAS  PubMed  Google Scholar 

  • Colucci-D'Amato L, di Porzio U (2008) Neurogenesis in adult CNS: from denial to opportunities and challenges for therapy. Bioessays 30:135–145

    Article  PubMed  Google Scholar 

  • Dang L, Tropepe V (2006) Neural induction and neural stem cell development. Regen Med 1:635–652

    Article  PubMed  Google Scholar 

  • Deacon T, Dinsmore J, Costantini L, Ratliff J, Isacson O (1998) Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 149:28–41

    Article  CAS  PubMed  Google Scholar 

  • Denner J (2008) Recombinant porcine endogenous retroviruses (PERV-A/C): a new risk for xenotransplantation? Arch Virol 153:1421–1426

    Article  CAS  PubMed  Google Scholar 

  • Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113:1701–1710

    CAS  PubMed  Google Scholar 

  • Diez del Corral R, Storey KG (2001) Markers in vertebrate neurogenesis. Nat Rev Neurosci 2:835–839

    Article  CAS  PubMed  Google Scholar 

  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with als can be differentiated into motor neurons. Science 321:1218–1221

    Article  CAS  PubMed  Google Scholar 

  • Drucker-Colin R, Verdugo-Diaz L (2004) Cell transplantation for Parkinson's disease: present status. Cell Mol Neurobiol 24:301–316

    Article  CAS  PubMed  Google Scholar 

  • Eberhard D, Tosh D (2008) Transdifferentiation and metaplasia as a paradigm for understanding development and disease. Cell Mol Life Sci 65:33–40

    Article  CAS  PubMed  Google Scholar 

  • Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi J-X, Lone T, Zhang Y-B, Snyder JA, Wells TH, Ramig LO, Thompson L, Mazziotta JC, Huang SC, Grafton ST, Brooks D, Sawle G, Schroter G, Ansari AA (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N Engl J Med 327:1549–1555

    Article  CAS  PubMed  Google Scholar 

  • Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med 344:710–719

    Article  CAS  PubMed  Google Scholar 

  • Freeman TB, Olanow CW, Hauser RA, Nauert GM, Smith DA, Borlongan CV, Sanberg PR, Holt DA, Kordower JH, Vingerhoets FJG, Snow BJ, Calne D, Gauger LL (1995) Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease. Exp Neurol 38:379–388

    CAS  Google Scholar 

  • Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 101:10177–10182

    Article  CAS  PubMed  Google Scholar 

  • Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24:115–124

    Article  PubMed  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  • Geraerts M, Krylyshkina O, Debyser Z, Baekelandt V (2007) Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells 25:263–270

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Yin F, Meng HQ, Ling L, Hu-He TN, Li P, Zhang CX, Yu S, Duan DS, Fan HX (2005) Differentiation of mesenchymal stem cells into dopaminergic neuron-like cells in vitro. Biomed Environ Sci 18:36–42

    PubMed  Google Scholar 

  • Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, Widner H, Brundin P, Rothwell JC, Odin P, Wenning GK, Morrish P, Gustavii B, Bjorklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O (1999) Sequential bilateral transplantation in Parkinson's disease: effects of the second graft. Brain 122(Pt 6): 1121–1132

    Article  PubMed  Google Scholar 

  • Hall VJ, Li JY, Brundin P (2007) Restorative cell therapy for Parkinson's disease: a quest for the perfect cell. Semin Cell Dev Biol 18:859–869

    Article  CAS  PubMed  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  CAS  PubMed  Google Scholar 

  • Harland R (2000) Neural induction. Curr Opin Genet Dev 10:357–362

    Article  Google Scholar 

  • Haviernik P, Bunting KD (2004) Safety concerns related to hematopoietic stem cell gene transfer using retroviral vectors. Curr Gene Ther 4:263–276

    CAS  PubMed  Google Scholar 

  • Hedlund E, Pruszak J, Ferree A, Vinuela A, Hong S, Isacson O, Kim KS (2007) Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations. Stem Cells 25:1126–1135

    Article  CAS  PubMed  Google Scholar 

  • Hedlund E, Pruszak J, Lardaro T, Ludwig W, Vinuela A, Kim KS, Isacson O (2008) Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson's disease. Stem Cells 26:1526–1536

    Article  CAS  PubMed  Google Scholar 

  • Hermann A, Maisel M, Wegner F, Liebau S, Kim DW, Gerlach M, Schwarz J, Kim KS, Storch A (2006) Multipotent neural stem cells from the adult tegmentum with dopaminergic potential develop essential properties of functional neurons. Stem Cells 24:949–964

    Article  CAS  PubMed  Google Scholar 

  • Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Kang UJ, Isacson O, Kim KS (2008) Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J Neurochem 104:316–324

    CAS  PubMed  Google Scholar 

  • Hwang WS, Lee BC, Lee CK, Kang SK (2005) Human embryonic stem cells and therapeutic cloning. J Vet Sci 6:87–96

    PubMed  Google Scholar 

  • Iacovitti L, Donaldson AE, Marshall CE, Suon S, Yang M (2007) A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: Studies in vitro and in vivo. Brain Res 1127:19–25

    Article  CAS  PubMed  Google Scholar 

  • Isacson O (2003) The production and use of cells as therapeutic agents in neurodegenerative diseases. Lancet Neurol 2:417–424

    Article  CAS  PubMed  Google Scholar 

  • Jackson L, Jones DR, Scotting P, Sottile V (2007) Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med 53:121–127

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567–582

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA 100 Suppl 1: 11854–11860

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S, Nakatsuji N, Sasai Y (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci USA 99:1580–1585

    Article  CAS  PubMed  Google Scholar 

  • Kay JN, Blum M (2000) Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 22:56–67

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418:50–56

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650

    Article  CAS  PubMed  Google Scholar 

  • Kittappa R, Chang WW, Awatramani RB, McKay RD (2007) The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol 5:e325

    Article  PubMed  CAS  Google Scholar 

  • Ko JY, Park CH, Koh HC, Cho YH, Kyhm JH, Kim YS, Lee I, Lee YS, Lee SH (2007) Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source for human dopamine neurons. J Neurochem 103:1417–1429

    Article  CAS  PubMed  Google Scholar 

  • Koller WC, Tse W (2004) Unmet medical needs in Parkinson's disease. Neurology 62:S1–S8

    CAS  PubMed  Google Scholar 

  • Kondo T, Johnson SA, Yoder MC, Romand R, Hashino E (2005) Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc Natl Acad Sci USA 102:4789–4794

    Article  CAS  PubMed  Google Scholar 

  • Kordower J, Rosenstein J, Collier T, Burke M, Chen E, Li J, Martel L, Levey A, Mufson E, Freeman T, Olanow C (1996) Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol 370:203–230

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat Med 14:504–506

    Article  CAS  PubMed  Google Scholar 

  • Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells–a critical review. Apmis 113:831–844

    Article  PubMed  Google Scholar 

  • Kwon CH, Zhao D, Chen J, Alcantara S, Li Y, Burns DK, Mason RP, Lee EY, Wu H, Parada LF (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68: 3286–3294

    Article  CAS  PubMed  Google Scholar 

  • Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773

    Article  CAS  PubMed  Google Scholar 

  • Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, Hofmeister E, Schuch G, Soker S, Moraes CT, West MD, Atala A (2002) Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 20:689–696

    Article  CAS  PubMed  Google Scholar 

  • Lazic SE, Barker RA (2003) The future of cell-based transplantation therapies for neurodegenerative disorders. J Hematother Stem Cell Res 12:635–642

    Article  CAS  PubMed  Google Scholar 

  • Lazzari G, Colleoni S, Giannelli SG, Brunetti D, Colombo E, Lagutina I, Galli C, Broccoli V (2006) Direct derivation of neural rosettes from cloned bovine blastocysts: a model of early neurulation events and neural crest specification in vitro. Stem Cells 24:2514–2521

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Christophersen NS, Hall V, Soulet D, Brundin P (2008a) Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 31:146–153

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008b) Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  CAS  PubMed  Google Scholar 

  • Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22:6639–6649

    CAS  PubMed  Google Scholar 

  • Lindvall O (1994) Neural transplantation in Parkinson's disease. In: Dunnett SB, Björklund A (eds) Functional neural transplantation. Raven Press, New York, pp 103–137

    Google Scholar 

  • Lindvall O (2000) Neural transplantation in Parkinson's disease. Novartis Found Symp 231:110–123 discussion 123-118, 145-117

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O (2003) Stem cells for cell therapy in Parkinson's disease. Pharmacol Res 47:279–287

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Bjorklund A (2004) Cell therapy in Parkinson's disease. NeuroRx 1:382–393

    Article  PubMed  Google Scholar 

  • Lupo G, Harris WA, Lewis KE (2006) Mechanisms of ventral patterning in the vertebrate nervous system. Nat Rev Neurosci 7:103–114

    Article  CAS  PubMed  Google Scholar 

  • Martinat C, Bacci JJ, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U, Wang H, Abeliovich A (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci USA 103:2874–2879

    Article  CAS  PubMed  Google Scholar 

  • Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25:1177–1181

    Article  CAS  PubMed  Google Scholar 

  • Melamed E, Ziv I, Djaldetti R (2007) Management of motor complications in advanced Parkinson's disease. Mov Disord 22 Suppl 17:S379–S384

    Article  PubMed  Google Scholar 

  • Mendez I, Dagher A, Hong M, Gaudet P, Weerasinghe S, McAlister V, King D, Desrosiers J, Darvesh S, Acorn T, Robertson H (2002) Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study Report of three cases. J Neurosurg 96:589–596

    Article  PubMed  Google Scholar 

  • Mendez I, Sanchez-Pernaute R, Cooper O, Vinuela A, Ferrari D, Bjorklund L, Dagher A, Isacson O (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 128:1498–1510

    Article  PubMed  Google Scholar 

  • Mendez I, Vinuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, Tierney T, Holness R, Dagher A, Trojanowski JQ, Isacson O (2008) Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years. Nat Med 14:507–509

    Article  CAS  PubMed  Google Scholar 

  • Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384

    Article  CAS  PubMed  Google Scholar 

  • Mohapel P, Frielingsdorf H, Haggblad J, Zachrisson O, Brundin P (2005) Platelet-derived growth factor (PDGF-BB) and brain-derived neurotrophic factor (BDNF) induce striatal neurogenesis in adult rats with 6-hydroxydopamine lesions. Neuroscience 132:767–776

    Article  CAS  PubMed  Google Scholar 

  • Moran LB, Croisier E, Duke DC, Kalaitzakis ME, Roncaroli F, Deprez M, Dexter DT, Pearce RK, Graeber MB (2007) Analysis of alpha-synuclein, dopamine and parkin pathways in neuropathologically confirmed parkinsonian nigra. Acta Neuropathol 113:253–263

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Sanjuan I, Brivanlou AH (2001) Early posterior/ventral fate specification in the vertebrate embryo. Dev Biol 237:1–17

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Sanjuan I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3:271–280

    Article  CAS  PubMed  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 54:403–414

    Article  PubMed  Google Scholar 

  • Park S, Lee KS, Lee YJ, Shin HA, Cho HY, Wang KC, Kim YS, Lee HT, Chung KS, Kim EY, Lim J (2004) Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett 359:99–103

    Article  CAS  PubMed  Google Scholar 

  • Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  CAS  PubMed  Google Scholar 

  • Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761

    Article  CAS  PubMed  Google Scholar 

  • Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, Harrison NL, Studer L (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101:12543–12548

    Article  CAS  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  • Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat Neurosci 2:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Piccini P, Lindvall O, Bjorklund A, Brundin P, Hagell P, Ceravolo R, Oertel W, Quinn N, Samuel M, Rehncrona S, Widner H, Brooks DJ (2000) Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann Neurol 48:689–695

    Article  CAS  PubMed  Google Scholar 

  • Popolo M, McCarthy DM, Bhide PG (2004) Influence of dopamine on precursor cell proliferation and differentiation in the embryonic mouse telencephalon. Dev Neurosci 26:229–244

    Article  CAS  PubMed  Google Scholar 

  • Pruszak J, Sonntag KC, Aung MH, Sanchez-Pernaute R, Isacson O (2007) Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 25:2257–2268

    Article  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Pernaute R, Studer L, Ferrari D, Perrier A, Lee H, Vinuela A, Isacson O (2005) Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 23:914–922

    Article  PubMed  Google Scholar 

  • Sanchez-Pernaute R, Lee H, Patterson M, Reske-Nielsen C, Yoshizaki T, Sonntag KC, Studer L, Isacson O (2008) Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson's disease. Brain 131:2127–2139

    Article  PubMed  Google Scholar 

  • Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, Burbach JP, Conneely OM (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 95:4013–4018

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2007) Future directions in the treatment of Parkinson's disease. Mov Disord 22 Suppl 17:S385–S391

    Article  PubMed  Google Scholar 

  • Scharfman HE, Hen R (2007) Neuroscience. Is more neurogenesis always better? Science 315:336–338

    Article  CAS  PubMed  Google Scholar 

  • Schier AF, Shen MM (2000) Nodal signalling in vertebrate development. Nature 403:385–389

    Article  CAS  PubMed  Google Scholar 

  • Schulz TC, Noggle SA, Palmarini GM, Weiler DA, Lyons IG, Pensa KA, Meedeniya AC, Davidson BP, Lambert NA, Condie BG (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 22:1218–1238

    Article  CAS  PubMed  Google Scholar 

  • Sgado P, Alberi L, Gherbassi D, Galasso SL, Ramakers GM, Alavian KN, Smidt MP, Dyck RH, Simon HH (2006) Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc Natl Acad Sci USA 103:15242–15247

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Chi L, Bishop M, Luo C, Lien L, Zhang Z, Liu R (2006) Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson's disease-like mice. Stem Cells 24: 1280–1287

    Article  CAS  PubMed  Google Scholar 

  • Smidt MP, van Schaick HS, Lanctot C, Tremblay JJ, Cox JJ, van der Kleij AA, Wolterink G, Drouin J, Burbach JP (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 94: 13305–13310

    Article  CAS  PubMed  Google Scholar 

  • Sonnier L, Le Pen G, Hartmann A, Bizot JC, Trovero F, Krebs MO, Prochiantz A (2007) Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J Neurosci 27:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Sonntag KC, Sanchez-Pernaute R (2006) Tailoring human embryonic stem cells for neurodegenerative disease therapy. Curr Opin Investig Drugs 7:614–618

    CAS  PubMed  Google Scholar 

  • Sonntag KC, Simantov R, Kim KS, Isacson O (2004) Temporally induced Nurr1 can induce a non-neuronal dopaminergic cell type in embryonic stem cell differentiation. Eur J Neurosci 19:1141–1152

    Article  PubMed  Google Scholar 

  • Sonntag KC, Simantov R, Isacson O (2005) Stem cells may reshape the prospect of Parkinson's disease therapy. Brain Res Mol Brain Res 134:34–51

    Article  CAS  PubMed  Google Scholar 

  • Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O (2007) Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 25:411–418

    Article  CAS  PubMed  Google Scholar 

  • Suon S, Yang M, Iacovitti L (2006) Adult human bone marrow stromal spheres express neuronal traits in vitro and in a rat model of Parkinson's disease. Brain Res 1106:46–51

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115:102–109

    CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tatard VM, D'Ippolito G, Diabira S, Valeyev A, Hackman J, McCarthy M, Bouckenooghe T, Menei P, Montero-Menei CN, Schiller PC (2007) Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons. Bone 40:360–373

    Article  CAS  PubMed  Google Scholar 

  • Thomas B, Beal MF (2007) Parkinson's disease. Hum Mol Genet 16(Spec No: 2):R183–R194

    Article  CAS  PubMed  Google Scholar 

  • Thompson LH, Kirik D, Bjorklund A (2008) Non-dopaminergic neurons in ventral mesencephalic transplants make widespread axonal connections in the host brain. Exp Neurol 213:220–228

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann H, Asashima M, Grunz H, Knochel W (1998) Neural induction in embryos. Dev Growth Differ 40:363–376

    Article  CAS  PubMed  Google Scholar 

  • Trzaska KA, Kuzhikandathil EV, Rameshwar P (2007) Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells 25:2797–2808

    Article  CAS  PubMed  Google Scholar 

  • Van Kampen JM, Eckman CB (2006) Dopamine D3 receptor agonist delivery to a model of Parkinson's disease restores the nigrostriatal pathway and improves locomotor behavior. J Neurosci 26:7272–7280

    Article  PubMed  CAS  Google Scholar 

  • Van Kampen JM, Robertson HA (2005) A possible role for dopamine D3 receptor stimulation in the induction of neurogenesis in the adult rat substantia nigra. Neuroscience 136:381–386

    Article  PubMed  CAS  Google Scholar 

  • Van Kampen JM, Hagg T, Robertson HA (2004) Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. Eur J Neurosci 19:2377–2387

    Article  PubMed  Google Scholar 

  • Vieyra DS, Jackson KA, Goodell MA (2005) Plasticity and tissue regenerative potential of bone marrow-derived cells. Stem Cell Rev 1:65–69

    Article  PubMed  Google Scholar 

  • Weiss RA (2006) The discovery of endogenous retroviruses. Retrovirology 3:67

    Article  PubMed  CAS  Google Scholar 

  • Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci USA 105:5856–5861

    Article  CAS  PubMed  Google Scholar 

  • Wilson SI, Edlund T (4) Neural induction: toward a unifying mechanism. Nat Neurosci 4 Suppl:1161–1168

    Google Scholar 

  • Wilson PG, Stice SS (2006) Development and differentiation of neural rosettes derived from human embryonic stem cells. Stem Cell Rev 2:67–77

    Article  CAS  PubMed  Google Scholar 

  • Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23:392–402

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23:781–790

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Wang XJ, Zhang YH, Lu GQ, Liang L, Xu JY, Chen SD (2007) Transplantation of bone marrow stromal cells containing the neurturin gene in rat model of Parkinson's disease. Brain Res 1142:206–216

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi K, Ren YR, Seki T, Yamada M, Ooizumi H, Onodera M, Saito Y, Murayama S, Okano H, Mizuno Y, Mochizuki H (2005) Possibility for neurogenesis in substantia nigra of parkinsonian brain. Ann Neurol 58:31–40

    Article  PubMed  Google Scholar 

  • Yu J, Thomson JA (2008) Pluripotent stem cell lines. Genes Dev 22:1987–1997

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen GJ, Rao MS, Freed WJ (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22:925–940

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC (2006) Neural subtype specification from embryonic stem cells. Brain Pathol 16:132–142

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100:7925–7930

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-C. Sonntag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Sonntag, KC., Simunovic, F., Sanchez-Pernaute, R. (2009). Stem Cells and Cell Replacement Therapy for Parkinson's Disease. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_24

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics