Skip to main content

In vitro comparison of two generations of Licox and Neurotrend catheters

  • Conference paper
Book cover Acta Neurochirurgica Supplements

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 102))

Background Clinical reports on brain tissue oxygen tension differ in suggested threshold values for defining cerebral ischemia using the Licox and Neurotrend/Paratrend system. We evaluated in vitro performance of both first and second generation devices.

Materials and methods Response rate and accuracy in solutions with oxygen tensions from 0 to 150 mm Hg were measured.

Findings Ninety-five percent Response times were 102±13 seconds for first generation Licox probes and 135±24 s for Paratrend (n=6, each probe), with second generation probes at 134±4 and 116±16 s respectively. At pO2 150 mmHg Licox and Paratrend probes were accurate with 2.2% and 2.1% error, respectively and 2.6% and 4.1% for later generation. At pO2 18 mmHg, Paratrend overestimated by 16.5% (absolute error range 2.18 to 4.18 mmHg), 7.4% for Neurotrend, Licox underestimated by 1.8% (absolute error range 0.08 to 0.52 mmHg) with 3.6% for the second generation probe.

Conclusions Differences between the first generation probe types, while statistically significant (p<0.001), may not be clinically relevant. Overestimation of pO2 by Neurotrend and small underestimation by Licox partially explain differences in published thresholds for cerebral ischemia. The Neurotrend was slightly more accurate and faster than the Paratrend system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardt TF, Unterberg AW, Hartl R, Kiening KL, Schneider GH, Lanksch WR (1998) Monitoring of brain tissue PO2 in traumatic brain injury: effect of cerebral hypoxia on outcome. Acta Neuro-chir Suppl 71:153–156

    CAS  Google Scholar 

  2. Clark LC (1956) Monitor and control of blood and tissue oxygen tensions. Trans Am Soc Artif Int Org 2:41–45

    Google Scholar 

  3. Dings J, Meixensberger J, Jager A, Roosen K (1998) Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 43:1082–1095

    Article  PubMed  CAS  Google Scholar 

  4. Doppenberg EM, Zauner A, Watson JC, Bullock R (1998) Determination of the ischemic threshold for brain oxygen tension. Acta Neurochir Suppl 71:166–169

    PubMed  CAS  Google Scholar 

  5. Gopinath SP, Valadka AB, Uzura M, Robertson CS (1999) Comparison of jugular venous oxygen saturation and brain tissue pO2 as monitors of cerebral ischemia after head injury. Crit Care Med 27:2337–2345

    Article  PubMed  CAS  Google Scholar 

  6. Henze D, Bomplitz M, Radke J, Clausen T (2004) Reliability of the NeuroTrend sensor system under hyperbaric conditions. J Neurosci Methods 132:45–56

    Article  PubMed  CAS  Google Scholar 

  7. Hoelper BM, Alessandri B, Heimann A, Behr R, Kempski O (2005) Brain oxygen monitoring: in-vitro accuracy, long-term drift and response-time of Licox- and Neurotrend sensors. Acta Neurochir (Wien) 147:767–774

    Article  CAS  Google Scholar 

  8. Hoffman WE, Charbel FT, Edelman G (1996) Brain tissue oxygen, carbon dioxide, and pH in neurosurgical patients at risk for ischemia. Anesth Analg 82:582–586

    Article  PubMed  CAS  Google Scholar 

  9. Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR (1996) Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue pO2 versus jugular vein oxygen saturation. J Neurosurg 85:751–757

    Article  PubMed  CAS  Google Scholar 

  10. Manley GT, Pitts LH, Morabito D, Doyle CA, Gibson J, Gimbel M, Hopf HW, Knudson MM (1999) Brain tissue oxygenation during hemorrhagic shock, resuscitation, and alterations in ventilation. J Trauma 46:261–267

    Article  PubMed  CAS  Google Scholar 

  11. Menzel M, Soukup J, Henze D, Engelbrecht K, Senderreck M, Scharf A, Rieger A, Grond S (2003) Experiences with continuous intra-arterial blood gas monitoring: precision and drift of a pure optode-system. Intensive Care Med 29:2180– 2186

    Article  PubMed  Google Scholar 

  12. Reinert M, Barth A, Rothen HU, Schaller B, Takala J, Seiler RW (2003) Effects of cerebral perfusion pressure and increased fraction of inspired oxygen on brain tissue oxygen, lactate and glucose in patients with severe head injury. Acta Neurochir (Wien) 145:341–349 discussion 349–350

    CAS  Google Scholar 

  13. Sarrafzadeh AS, Kiening KL, Bardt TF, Schneider GH, Unterberg AW, Lanksch WR (1998) Cerebral oxygenation in contusioned vs. nonaligned brain tissue: monitoring of PtiO2 with Licox and Paratrend. Acta Neurochir Suppl 71:186–189

    PubMed  CAS  Google Scholar 

  14. Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS (1998) Relationship of brain tissue pO2 to outcome after severe head injury. Crit Care Med 26:1576–1581

    Article  PubMed  CAS  Google Scholar 

  15. van den Brink WA, Haitsma IK, Avezaat CJ, Houtsmuller AB, Kros JM, Maas AI (1998) Brain parenchyma/pO2 catheter interface: a histopathological study in the rat. J Neurotrauma 15:813–824

    Article  PubMed  Google Scholar 

  16. van den Brink WA, van Santbrink H, Steyerberg EW, Avezaat CJ, Suazo JA, Hogesteeger C, Jansen WJ, Kloos LM, Vermeulen J, Maas AI (2000) Brain oxygen tension in severe head injury. Neurosurgery 46:868–876 discussion 876– 868

    Article  PubMed  Google Scholar 

  17. van Santbrink H, Maas AI, Avezaat CJ (1996) Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery 38:21–31

    Article  PubMed  Google Scholar 

  18. van Santbrink H, vd Brink WA, Steyerberg EW, Carmona Suazo JA, Avezaat CJ, Maas AI (2003) Brain tissue oxygen response in severe traumatic brain injury. Acta Neurochir (Wien) 145:429–438 discussion 438

    Google Scholar 

  19. Venkatesh B, Clutton Brock TH, Hendry SP (1994) A multiparameter sensor for continuous intra-arterial blood gas monitoring: a prospective evaluation. Crit Care Med 22:588– 594

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -J. Steiger

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this paper

Cite this paper

Haitsma, I., Rosenthal, G., Morabito, D., Rollins, M., Maas, A.I., Manley, G.T. (2008). In vitro comparison of two generations of Licox and Neurotrend catheters. In: Steiger, H.J. (eds) Acta Neurochirurgica Supplements. Acta Neurochirurgica Supplementum, vol 102. Springer, Vienna. https://doi.org/10.1007/978-3-211-85578-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-85578-2_39

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-85577-5

  • Online ISBN: 978-3-211-85578-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics