Skip to main content

Einstein Metrics and Metrics with Bounds on Ricci Curvature

  • Conference paper
Proceedings of the International Congress of Mathematicians

Abstract

There is a well-developed theory of the behavior of Riemannian metrics on smooth manifolds, which have uniform bounds on the sectional curvature K. The compactness theorem of Cheeger-Gromov [Ch], [Gr] implies that the space of metrics satisfying the bounds

$$\left| K \right| \leqslant \Lambda ,{\text{vol}} \geqslant v,{\text{diam}} \leqslant D$$
(0.1)

is C1, α precompact. Thus, given any sequence of metrics g i satisfying the bounds (0.1), there is a subsequence {i′} and a sequence of diffeomorphisms φL of M, such that the isometric metrics g p = (φi)*gi converge, in the C1, α′ topology on M, to a C1, α metric g on M, ∀α′ < α < 1. If the volume or diameter bounds are removed in (0.1), one no longer has such compactness, but the degeneration of the sequence {g i } is well understood, through the workds of Cheeger-Gromov [CG1], [CG2] and Fukaya [F], cf. also [CGF]. The manifolds (M, g i ) divide into two regions, the thick part Mε and the thin part Mε. Roughly speaking, on Mε the metrics converge, as above, to a limit C1,α metric, while the complement Lε is ε-collapsed along a well-defined topological structure, called an F-structurem or more generally an N-structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc., vol. 2, (1989), 455–490.

    Article  MathSciNet  Google Scholar 

  2. ——, Short geodesics and gravitational instantons, J. Differential Geom., vol. 31, (1990), 265–275.

    Article  MathSciNet  Google Scholar 

  3. ——, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math., vol. 102, (1990), 429–445.

    Article  MathSciNet  Google Scholar 

  4. ——, The L 2 structure of moduli spaces of Einstein metrics on 4-manifolds, Geom. and Functional Analysis, vol. 2, (1992), 29–89.

    Article  MathSciNet  Google Scholar 

  5. ——, Hausdorff perturbations of Riccifiat manifolds and the splitting theorem, Duke Math. J., vol. 68, (1992), 67–82.

    Article  MathSciNet  Google Scholar 

  6. ——, Degenerations of metrics with bounded curvature and applications to critical metrics of Riemannian functionals, Proc. Sympos. Pure Math., vol. 54:3, (1993), 53–79.

    Article  MathSciNet  Google Scholar 

  7. ——, Scalar curvature and geometrization conjectures for 3-manifolds, MSRI Volume on Comparison Geometry, Springer Verlag, to appear.

    Google Scholar 

  8. ——, to appear.

    Google Scholar 

  9. M. Anderson and J. Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature and L’ 2 norm of curvature bounded, Geom. Functional Anal., vol. 1, (1991), 231–251.

    Article  MathSciNet  Google Scholar 

  10. ——, C’compactness for manifolds with Ricci curvature and injectivity radius bounded below, J. Differential Geom., vol. 35, (1992), 265–281.

    Article  MathSciNet  Google Scholar 

  11. S. Bando, Bubbling out of Einstein manifolds, Tohoku Math. J. (2), vol. 42, (1990), 205–216 and 587–588.

    Article  MathSciNet  Google Scholar 

  12. S. Bando, A. Kasue, and H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math., vol. 97, (1989), 313–349.

    Article  MathSciNet  Google Scholar 

  13. A. Besse, Einstein Manifolds, Ergebnisse Series 3. Folge Band 10, Springer Verlag, (1987).

    Book  Google Scholar 

  14. G. Besson, G. Courtois, and S. Gallot, Les variétds hyperboliques sont des minima d’entropie topologique, Invent. Math., vol. 118 (1994).

    Google Scholar 

  15. J. Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math., vol. 92, (1970), 61–74.

    Article  MathSciNet  Google Scholar 

  16. J. Cheeger and T. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, to appear.

    Google Scholar 

  17. ——, On the local structure of manifolds with Ricci curvature bounded below, to appear.

    Google Scholar 

  18. J. Cheeger, K. Fukaya, and M. Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc., vol. 5, (1992), 327–372.

    Article  MathSciNet  Google Scholar 

  19. J. Cheeger and M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded I, J. Differential Geom., vol. 23, (1986), 309–346.

    Article  MathSciNet  Google Scholar 

  20. ——, Collapsing Riemannian manifolds while keeping their curvature bounded II, J. Differential Geom., vol. 32, (1990), 269–298.

    Article  MathSciNet  Google Scholar 

  21. T. Colding, Ricci curvature and volume convergence, preprint.

    Google Scholar 

  22. K. Fukaya, Collapsing Riemannian manifolds to ones of lower dimension, J. Differential Geom., vol. 25, (1987), 139–156.

    Article  MathSciNet  Google Scholar 

  23. S. Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque, vol. 157–158, (1988), 191–217.

    MathSciNet  MATH  Google Scholar 

  24. G. Gibbons and S. Hawking, Gravitational multi-instantons, Phys. Lett. B, vol. 78, (1978), 430–432.

    Article  Google Scholar 

  25. M. Gromov, Structures Metriques pour les Varieties Riemanniennes, Cedic-Fernand/Nathan, Paris, 1981.

    Google Scholar 

  26. D. Joyce, Compact Riemannian 7-manifolds with holonomy G2: I, II, preprints.

    Google Scholar 

  27. N. Koiso, Rigidity and stability of Einstein metrics. The case of compact symmetrics spaces, Osaka J. Math., vol. 17, (1980), 51–73.

    MathSciNet  MATH  Google Scholar 

  28. P. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom., vol. 29, (1989), 685–697.

    Article  MathSciNet  Google Scholar 

  29. G. Perelman, Manifolds of positive Ricci curvature with almost maximal volume, J. Amer. Math. Soc., vol. 7, (1994), 299–305.

    Article  MathSciNet  Google Scholar 

  30. ——, Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, preprint.

    Google Scholar 

  31. J. P. Sha and D. G. Yang, Examples of metrics of positive Ricci curvature, J. Differential Geom., vol. 29, (1989), 95–104.

    Article  MathSciNet  Google Scholar 

  32. J. P. Sha and D. G. Yang, Positive Ricci curvature on the connected sums of S n x S m, J. Differential Geom., vol. 33, (1991), 127–137.

    Article  MathSciNet  Google Scholar 

  33. W. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., vol. 6, (1982), 357–381.

    Article  MathSciNet  Google Scholar 

  34. G. Tian, Kahler-Einstein metrics on algebraic manifolds, Proc. I.C.M. 1990, Math. Soc. Japan, (1991), 587–598.

    Google Scholar 

  35. D. Yang, Convergence of Riemannian manifolds with integral bounds on curvature I, II, Ann. Sci. Ecole Norm. Sup. (4), vol. 25, (1992), 77–105, 179–199.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Anderson, M.T. (1995). Einstein Metrics and Metrics with Bounds on Ricci Curvature. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_37

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics