Skip to main content

Geometric Set Systems

  • Conference paper
European Congress of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 169))

Abstract

Let X be a finite point set in the plane. We consider the set system on X whose sets are all intersections of X with a halfplane. Similarly one can investigate set systems defined on point sets in higher-dimensional spaces by other classes of simple geometric figures (simplices, balls, ellipsoids, etc.). It turns out that simple combinatorial properties of such set systems (most notably the Vapnik-Chervonenkis dimension and related concepts of shatter functions) play an important role in several areas of mathematics and theoretical computer science. Here we concentrate on applications in discrepancy theory, in combinatorial geometry, in derandomization of geometric algorithms, and in geometric range searching. We believe that the tools described might be useful in other areas of mathematics too.

Part of this survey was written while the author was visiting ETH Zürich, whose support is gratefully acknowledged. Also supported by Czech Republic Grant GAČR 0194/1996 and by Charles University grants No. 193,194/1996.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AAH+97]_A. Andrzejak, B. Aronov, S. Har-Peled, R. Seidel, and E. Welzl. Results on K-sets and j-facets via continuous motions. Manuscript, 1997.

    Google Scholar 

  2. M. Anthony and N. Biggs. Computational Learning Theory. Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  3. N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimension, uniform convergence and learnability. In Proc. 34th IEEE Symposium on Foundations of Computer Science, pages 292–300, 1993.

    Google Scholar 

  4. N. Alon, I. Bárány, Z. Füredi, and D. Kleitman. Point selections and weak e-nets for convex hulls. Combin., Probab. Comput., 1(3):189–200, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. [AEG+91]_B. Aronov, P. Erdös, W. Goddard, D. J. Kleitman, M. Klugerman, J. Pach, and L. J. Schulman. Crossing families. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 351–356, 1991.

    Google Scholar 

  6. B. Aronov, H. Edelsbrunner, L. J. Guibas, and M. Sharir. The number of edges of many faces in a line segment arrangement. Combinatorica, 12(3):261–274, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Alon, D. Haussler, and E. Welzl. Partitioning and geometric embedding of range spaces of finite Vapnik-Chervonenkis dimension. In Proc. 3rd Annu. ACM Sympos. Comput. Geom., pages 331–340, 1987.

    Google Scholar 

  8. N. Alon and D. Kleitman. Piercing convex sets and the hadwiger debrunner (p,q)-problem. Adv. Math., 96(1):103–112, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Alexander. Geometric methods in the theory of uniform distribution. Combinatorica, 10(2): 115–136, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Alon and J. Spencer. The probabilistic method. J. Wiley & Sons, 1993.

    Google Scholar 

  11. P. K. Agarwal and M. Sharir. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge, UK, 1995.

    MATH  Google Scholar 

  12. P. Assouad. Densité et dimension. Ann. Inst. Fourier (Grenoble), 33:233–282, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. S. Alexander and M. Talagrand. The law of the iterated logarithm for empirical processes on Vapnik-Chervonenkis classes. J. Multivariate Anal., 30:155–166, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Beck and W. Chen. Irregularities of distribution. Cambridge University Press, 1987.

    Google Scholar 

  15. P. G. Bradford and V. Capoyleas. Weak ∈-nets for points on a hyper-sphere. Report MPI-I-95-1-029, Max-Planck-Institut Inform., Saarbrücken, Germany, 1995.

    Google Scholar 

  16. H. Brönnimann, B. Chazelle, and J. Matousek. Product range spaces, sensitive sampling, and derandomization. In Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci., pages 400–409, 1993.

    Google Scholar 

  17. H. Brönnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching. Discrete Comput. Geom., 10:143–155, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Beck. Roth’s estimate on the discrepancy of integer sequences is nearly sharp. Combinatorica, 1(4):319–325, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Beck. Some upper bounds in the theory of irregularities of distribution. Acta Arith., 43:115–130, 1984.

    MathSciNet  MATH  Google Scholar 

  20. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimension. J. ACM, 36:929–965, 1989.

    Google Scholar 

  21. J. Bourgain and J. Lindenstrauss. Distribution of points on the sphere and approximation by zonotopes. Isr. J. Math., 64:25–31, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Bourgain and J. Lindenstrauss. Approximating the ball by a Minkowski sum of segments with equal length. Discr. & Comput. Geom., 9:131–144, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of zonoids by zonotopes. Acta Math., 162:73–141, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Basu, R. Pollack, and M.-F. Roy. On the number of cells defined by a family of polynomials on a variety. Mathematika 43,1:120–126, 1996.

    Article  MathSciNet  Google Scholar 

  25. J. Beck and V. Sos. Discrepancy theory. In Handbook of Combinatorics, pages 1405–1446. North-Holland, Amsterdam, 1995.

    Google Scholar 

  26. [BVS+92]_A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented matroids (Encyclopedia of Mathematics). Cambridge University Press, 1992.

    Google Scholar 

  27. K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl. Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom., 5:99–160, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, M. Sharir, and E. Welzl. Improved bounds on weak ∈-nets for convex sets. Discrete Comput. Geom., 13:1–15, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Lines in space: combinatorics, algorithms, and applications. In Proc. 21st Annu. ACM Sympos. Theory Comput., pages 382–393, 1989.

    Google Scholar 

  30. B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry. Combinatorica, 10(3):229–249, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Chazelle. Lower bounds on the complexity of polytope range searching. J. Amer. Math. Soc., 2:637–666, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom., 9(2):145–158, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Chazelle. A spectral approach to lower bounds. In Proc. 35th Ann. IEEE Symp. on Foundations of Computer Science, pages 674–682, 1994.

    Google Scholar 

  34. K. L. Clarkson. New applications of random sampling in computational geometry. Discrete Comput. Geom., 2:195–222, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  35. K. L. Clarkson. Algorithms for polytope covering and approximation. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes in Computer Science, pages 246–252, 1993.

    Google Scholar 

  36. B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom., 4:467–489, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  37. T. K. Dey and H. Edelsbrunner. Counting triangle crossings and halving planes. Discrete Comput. Geom., 12:281–289, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. K. Dey. Improved bounds for planar K-sets and related problems. Proc. 38th IEEE Sympos. Foundat Comput Sci., 1997, pages 156–161, 1997.

    Google Scholar 

  39. M. Kearns D. Haussler and R. Schapire. Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension. Machine Learning, 14:84–114, 1994.

    Google Scholar 

  40. G.-L. Ding, P. Seymour, and P. Winkler. Bounding the vertex cover number of a hypergraph. Combinatorica, 14:23–34, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. M. Dudley. A course on empirical measures. Lecture Notes in Math. 1097. Springer, 1984.

    Google Scholar 

  42. R. M. Dudley. The structure of some Vapnik-Chervonenkis classes. In Proc. of Berkeley Conference in honor of Jerzy Neyman and Jack Kiefer, Volume II, (LeCam and Olshen, Eds.), pages 495–507, 1985.

    Google Scholar 

  43. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.

    Google Scholar 

  44. H. Edelsbrunner, L. Guibas, and M. Sharir. The complexity of many cells in arrangements of planes and related problems. Discrete Comput. Geom., 5:197–216, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Erickson. New lower bounds for convex hull problems in odd dimensions. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 1–9, 1996.

    Google Scholar 

  46. P. Frankl. On the trace of finite sets. J. Comb. Theory, Ser. A, 34:41–45, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Giannopoulos. On some vector balancing problems. Studia Math. 1223:225–234, 1997.

    MathSciNet  MATH  Google Scholar 

  48. E. D. Gluskin. Extremal properties of orthogonal parallelpipeds and their applications to the geometry of Banach spaces. Math. USSR Sbornik, 64(1):85–96, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  49. B. Gärtner and E. Welzl. Vapnik-Chervonenkis dimension and (pseudo) hyperplane arrangements. Discr. Comput. Geom., 12:399–432, 1994.

    Article  MATH  Google Scholar 

  50. E. Giné and J. Zinn. Some limit theorems for empirical processes. Annals of Probability, 12:929–989, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100(1):78–150, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  52. D. Haussler. Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension. Journal of Combinatorial Theory Ser. A, 69:217–232, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  53. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom., 2:127–151, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  54. G. Kalai and J. Matousek. Guarding galleries where every point sees a large area. KAM Series (tech. Report) 95-293, Charles University, 1995. To appear in Israel J. Math.

    Google Scholar 

  55. M. Karpinski and A. Macintyre. Polynomial bounds for VC dimension of sigmoidal neural networks. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pages 200–208, 1995.

    Google Scholar 

  56. J. Komlós, J. Pach, and G. Woeginger. Almost tight bounds for ∈-nets. Discrete Comput. Geom., 7:163–173, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Kollár, L. Rönyai, and T. Szabö. Norm-graphs and bipartite Turán numbers. Combinatorica, 16,3:399–406, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Komlös, E. Szemerédi, and J. Pintz. A lower bound for Heilbronn’s problem. J. London Math. Soc, 25(2): 13–24, 1982.

    Article  MathSciNet  Google Scholar 

  59. M. Karpinski and T. Werther. VC dimension and uniform learnability of sparse polynomials and rational functions. SIAM Journal on Computing, 22(6):1276–1285, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  60. N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285–318, 1988.

    Google Scholar 

  61. J. Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–334, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  62. J. Matousek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom., 10(2): 157–182, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  63. J. Matoušek. On discrepancy bounds via dual shatter function. Mathe-matika, 44:42–49, 1997.

    MATH  Google Scholar 

  64. J. Matousek. Approximations and optimal geometric divide-and-conquer. J. of Computer and System Sciences, 50:203–208, 1995.

    Article  MathSciNet  Google Scholar 

  65. J. Matousek. Tight upper bounds for the discrepancy of halfspaces. Discr. & Comput. Geom., 13:593–601, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  66. J. Matoušek. Geometric range searching. ACM Comput. Surveys, 26:421–461, 1995.

    Google Scholar 

  67. J. Matoušek. Derandomization in computational geometry. J. Algorithms, 20:545–580, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  68. J. Matoušek. Improved upper bounds for approximation by zonotopes. Acta Math. 177:55–73, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  69. J. Milnor. On the Betti numbers of real algebraic varieties. Proc. Amer. Math. Soc., 15:275–280, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  70. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

    Google Scholar 

  71. J. Matousek and J. Spencer. Discrepancy in arithmetic progressions. J. Amer. Math. Soc, 9:195–204, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  72. K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.

    Google Scholar 

  73. J. Matousek, E. Welzl, and L. Wernisch. Discrepancy and e-approximations for bounded VC-dimension. Combinatorica, 13:455–466, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  74. H. Niederreiter. Random number generation and quasi-Monte Carlo methods. CBMS-NSF Regional Conference Series in Applied Mathematics. 63. Philadelphia, PA: SIAM, 1992.

    Book  MATH  Google Scholar 

  75. O.A. Oleinik. Estimates of the Betti numbers of real algebraic hypersurfaces (in Russian). Mat. Sbornik (N. S.), 28(70):635–640, 1951.

    MathSciNet  Google Scholar 

  76. J. Pach and P. K. Agarwal. Combinatorial Geometry. John Wiley & Sons, New York, NY, 1995.

    Book  MATH  Google Scholar 

  77. J. Pach. Geometric graphs. In J.E. Goodman, R. Pollack, and W. Steiger, editors, Computational Geometry: papers from the DIM ACS special year. Amer. Math. Soc, 1991.

    Google Scholar 

  78. J. Pach. A remark on transversal numbers. In: The Mathematics of Paul Erdös, Vol. II, pages 310-317, Springer-Verlag, Berlin etc., 1997.

    Google Scholar 

  79. J. Pach and M. Sharin. On the number of incidences between points and curves. Combinatorics, Probability, and Computing, to appear.

    Google Scholar 

  80. D. Pollard. Empirical processes: Theory and applications. NSF-CBMS Regional Conference Series in Probability and Statistics vol. 2. Institute of Math. Stat. and Am. Stat. Assoc, 1990.

    Google Scholar 

  81. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.

    Google Scholar 

  82. J. Pach, W. Steiger, and E. Szemerédi. An upper bound on the number of planar K-sets. Discrete Comput. Geom., 7:109–123, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  83. K. F. Roth. Remark concerning integer sequences. Acta Arithmetica, 9:257–260, 1964.

    MathSciNet  MATH  Google Scholar 

  84. K. Roth. Developments in the triangle problem. Adv. Math., 22:364–385, 1976.

    Article  MATH  Google Scholar 

  85. K. Romanik and J. Vitter. Using Vapnik-Chervonenkis dimension to analyze the testing complexity of program segments. Information and Computation 128,2:87–108, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  86. N. Sauer. On the density of families of sets. Journal of Combinatorial Theory Ser. A, 13:145–147, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  87. S. Shelah. A combinatorial problem, stability and order for models and theories in infinitary languages. Pacific J. Math., 41:247–261, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  88. J. Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc, 289:679–706, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  89. J. Spencer. Ten lectures on the probabilistic method. CBMS-NSF. SIAM, 1987.

    Google Scholar 

  90. E. Szemerédi and W. T. Trotter, Jr. Extremal problems in discrete geometry. Combinatorica, 3:381–392, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  91. L. Szé kely. Crossing numbers and hard Erdös problems in discrete geometry. Combinatorics, Probability, and Computing.

    Google Scholar 

  92. R. Thorn. Sur l’homologie des varié tés algé briques reélles. In Differential and Combinatorial Topology (S.S. Cairns ed.). Princeton Univ. Press, 1965.

    Google Scholar 

  93. P. Valtr. Guarding galleries where no point sees a small area. KAM Series (tech. Report) 95–305, Charles University, 1995.

    Google Scholar 

  94. V. N. Vapnik. Estimation of dependences based on empirical data. Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  95. V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl., 16:264–280, 1971.

    Article  MATH  Google Scholar 

  96. E. Welzl. Partition trees for triangle counting and other range searching problems. In Proc. 4th Annu. ACM Sympos. Convput. Geom., pages 23–33, 1988.

    Google Scholar 

  97. M. Watanabe and P. Frankl. Some best possible bounds concerning the traces of finite sets. Graphs Comb., 10:283–292, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  98. D. E. Willard. Polygon retrieval. SIAM J. Comput., 11:149–165, 1982.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

MatouŠek, J. (1998). Geometric Set Systems. In: Balog, A., Katona, G.O.H., Recski, A., Sza’sz, D. (eds) European Congress of Mathematics. Progress in Mathematics, vol 169. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8898-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8898-1_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9819-5

  • Online ISBN: 978-3-0348-8898-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics